Chapter 2 section 8

Chapter 2 section 8 - Chapter 2 section 8 Precise...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
Chapter 2 section 8 Precise definition of limit
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Objectives 1. Find  δ  in terms of  ε , given a limit. 2. Construct a formal proof of a limit of a  linear function.
Background image of page 2
Definition of limit Let f be a function defined on some open interval  that contains the number “a,” except, possibly at  “a” itself. Then, we say that the limit of f(x) as  x  approaches “a” is L and we write  lim x a f(x) = L  if for every number  ε  > 0,  there is a corresponding number  δ  > 0, such that  |f(x) – L| <  ε  whenever 0 <|x - a|< δ   or  if 0 < |x - a| <  δ , then |f(x) – L| <  ε .
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
That is, lim x a f(x) = L means the distance between f(x)  and L (which is  ε ) can be made arbitrarily  small by taking the distance from x to “a”  (which is  δ ) sufficiently small (but   0).
Background image of page 4
Example Given f(x) = 1/x, find  δ  such that |1/x – 0.5| < 0.2  whenever |x - 2| <  δ .
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 6
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 09/28/2009 for the course MATH 1550 taught by Professor Wei during the Spring '08 term at LSU.

Page1 / 12

Chapter 2 section 8 - Chapter 2 section 8 Precise...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online