prey_pred_mod_1 - printf("%f %f...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
/* pred_prey_mod1.c * Example code to solve the modified Lotka-Volterra ODEs using second * order Runge-Kutta. */ #include <stdio.h> #define N 2 /* number of ODEs */ #define TMIN 0.0 /* starting point for integration */ #define TMAX 30.0 /* stopping point for integration */ #define NSTEP 200 /* number of integration steps */ #define A 0.5 /* parameter in non-dim. Lotka-Volterra equations */ #define DELTA 0.2 /* small parameter in modified equations */ #define N0 0.5 #define P0 0.5 void rk2(float xin, float yin[], float yout[], float h); void derivs(float xin, float yin[], float dydx[]); int main() { int i; float h = (TMAX - TMIN)/(1.0*NSTEP); /* stepsize for integration */ float xin, yin[N], yout[N]; float t[NSTEP+1]; /* normalised time coordinate */ float prey[NSTEP+1], pred[NSTEP+1]; /* predator, prey populations */ /* Define array of t values */ for (i = 0; i <= NSTEP; i++) t[i] = TMIN + h*i; /* starting values */ prey[0] = N0; pred[0] = P0; /* do the integration */
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: printf(&quot;%f %f %f\n&quot;, t[0], prey[0], pred[0]); for (i = 0; i &lt;= NSTEP - 1; i++) { xin = t[i]; yin[0] = prey[i]; yin[1] = pred[i]; rk2(xin, yin, yout, h); /* do one integration step */ prey[i+1] = yout[0]; pred[i+1] = yout[1]; printf(&quot;%f %f %f\n&quot;, t[i+1], prey[i+1], pred[i+1]); } return 0; } void derivs(float xin, float yin, float dydx) { /* right hand sides of ODEs */ dydx[0] = ((1 - DELTA*yin[0]) - yin[1])*yin[0]; dydx[1] = -A*(1 - yin[0])*yin[1]; return; } void rk2(float xin, float yin, float yout, float h) { /* Second order Runge-Kutta scheme */ int i; float k1[N], k2[N], yt[N], dydx[N]; /* N is the number of ODEs */ /* Evaluate k1 */ derivs(xin, yin, dydx); for (i = 0; i &lt; N; i++) { k1[i] = h*dydx[i]; yt[i] = yin[i] + 0.5*k1[i]; } /* Evaluate k2, then update the dependent variable */ derivs(xin + 0.5*h, yt, dydx); for (i = 0; i &lt; N; i++) { k2[i] = h*dydx[i]; yout[i] = yin[i] + k2[i]; } return; }...
View Full Document

Page1 / 2

prey_pred_mod_1 - printf(&amp;amp;quot;%f %f...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online