527solns9

527solns9 - 642:527 SOLUTIONS ASSIGNMENT 9 FALL 2007...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 642:527 SOLUTIONS: ASSIGNMENT 9 FALL 2007 Section 9.9: 2 (a) See text solution. (d) The formula is (23) of the text. We have ( e 1 , e 1 ) (= e 1 · e 1 ) = 14, ( e 2 , e 2 ) = 5, ( e 3 , e 3 ) = 70, ( e 1 , u ) = 8, ( e 2 , u ) = 5, and ( e 3 , u ) = 10, so u = (4 / 7) e 1 + e 2 + (1 / 7) e 3 . 12 (d) See text solution. (f) Summary of the Gram-Schmidt process: Given v 1 , . . ., v n we define ˆ e 1 = v 1 / bardbl v 1 bardbl . Now, once we have defined ˆ e 1 , . . . ˆ e k we define ˆ e k +1 by a two-step process: e k +1 = v k +1 − k summationdisplay i =1 ( ˆ e i , v k +1 ) ˆ e i , ˆ e k +1 = e k +1 bardbl e k +1 bardbl . So for the given vectors v 1 = (1 , 1 , 1), v 2 = (1 , , 1), v 3 = (1 , 1 , 0) we have ˆ e 1 = v 1 bardbl v 1 bardbl = 1 radicalbig ( v 1 , v 1 ) v 1 = 1 √ 3 (1 , 1 , 1); e 2 = v 2 − ( ˆ e 1 , v 2 ) ˆ e 1 = (1 , , 1) − 2 3 (1 , 1 , 1) = 1 3 (1 , − 2 , 1) , ˆ e 2 = e 2 bardbl e 2 bardbl = 1 √ 6 (1 , − 2 , 1); e 3 = v 3 − ( ˆ e 1 , v 3 ) ˆ e 1 − ( ˆ e 2 , v 3 ) ˆ e 2 = (1 , 1 , 0) − 2 3 (1 , 1 , 1) + 1 6 (1 , − 2 , 1) = 1 2 (1 , , − 1) , ˆ e 3 = e 3 bardbl e 3 bardbl = 1 √ 2 (1 , , −...
View Full Document

Page1 / 3

527solns9 - 642:527 SOLUTIONS ASSIGNMENT 9 FALL 2007...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online