Ass06_due030908_sol_

# Ass06_due030908_sol_ - 2.9 (1 point) 5 days per week = 40...

This preview shows pages 1–5. Sign up to view the full content.

2.9 3000 units/week 3000 0.95 Eff 0.95 0.95 Rel 0.9 0.98 Yield 0.95 3 min/unit 5 40 hours/week 40 4.24 7.69 12 2.16 Order 20 Cost \$550 Finishing \$125 Recycle \$75 Price \$1,250 Min Good 15 Max p Number of castings scheduled 15 16 17 18 19 20 21 22 23 24 25 26 5 0.05 6 0.05 0.05 7 0.05 0.05 0.05 8 0.05 0.05 0.05 0.05 9 0.05 0.05 0.05 0.05 0.05 10 0.05 0.05 0.05 0.05 0.05 0.05 11 0.1 0.05 0.05 0.05 0.05 0.05 0.05 12 0.1 0.1 0.05 0.05 0.05 0.05 0.05 0.05 13 0.15 0.1 0.1 0.05 0.05 0.05 0.05 0.05 0.05 14 0.15 0.15 0.1 0.1 0.05 0.05 0.05 0.05 0.05 0.05 15 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0.05 0.05 0.05 0.05 16 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0.05 0.05 0.05 0.05 17 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0.05 0.05 0.05 18 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0.05 0.05 19 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0.05 20 0.2 0.15 0.15 0.1 0.1 0.05 0.05 21 0.2 0.15 0.15 0.1 0.1 0.05 22 0.2 0.15 0.15 0.1 0.1 23 0.2 0.15 0.15 0.1 24 0.2 0.15 0.15 25 0.2 0.15 26 0.2 27 # of good castings 2.9 (1 point) 5 days per week = 40 hours F = (3min/unit/60min/hr)*3000units/(0.95*0.95*40hours*.98) = 1 2.15 and 2.16 (3 points) a. Make a tree diagram of the 3 potential conditions, as shown below b. Write one Excel equation to produce that tree c. Multiply the probability chart by the profit chart d. Select the highest expected income It is at 25 units. e. For 2.16, Repeat using the binomial equation given instead o the probability chart and the same Excel equations. The high now is at 23. As you lower the probability, the required quant goes up. 2.26 (1 point) 2.27 (1 point)

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
28 29 30 1 1 1 1 1 1 1 1 1 1 1 1 2.16 p 0.88 15 16 17 18 19 20 21 22 23 24 25 26 15 0.15 0.28 0.29 0.21 0.12 0.06 0.02 0.01 0 0 0 0 16 0 0.13 0.26 0.28 0.22 0.13 0.07 0.03 0.01 0 0 0 17 0 0 0.11 0.25 0.28 0.22 0.14 0.07 0.03 0.01 0.01 0 18 0 0 0 0.1 0.23 0.27 0.23 0.15 0.08 0.04 0.02 0.01 19 0 0 0 0 0.09 0.21 0.27 0.23 0.16 0.09 0.05 0.02 20 0 0 0 0 0 0.08 0.2 0.26 0.24 0.17 0.1 0.05 21 0 0 0 0 0 0 0.07 0.18 0.25 0.24 0.18 0.11 22 0 0 0 0 0 0 0 0.06 0.17 0.24 0.24 0.19 23 0 0 0 0 0 0 0 0 0.05 0.15 0.23 0.24 24 0 0 0 0 0 0 0 0 0 0.05 0.14 0.22 25 0 0 0 0 0 0 0 0 0 0 0.04 0.13 26 0 0 0 0 0 0 0 0 0 0 0 0.04 27 0 0 0 0 0 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0 29 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 2.26 Co \$12 Cm \$25 a 6 b 0 t 34 n' 6.67 n 6 from diagram e 0.48 Phi 0.96 Since this is less than 1, assign n machines
2.27 16.5 minutes

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
purchase 20 27 28 29 30 15 16 17 18 19 5 (\$7,875) (\$8,425) (\$8,975) (\$9,525) (\$10,075) 6 (\$7,800) (\$8,350) (\$8,900) (\$9,450) (\$10,000) 7 (\$7,725) (\$8,275) (\$8,825) (\$9,375) (\$9,925) 8 (\$7,650) (\$8,200) (\$8,750) (\$9,300) (\$9,850) 9 (\$7,575) (\$8,125) (\$8,675) (\$9,225) (\$9,775) 10 (\$7,500) (\$8,050) (\$8,600) (\$9,150) (\$9,700) 11 (\$7,425) (\$7,975) (\$8,525) (\$9,075) (\$9,625) 12 (\$7,350) (\$7,900) (\$8,450) (\$9,000) (\$9,550) 13 (\$7,275) (\$7,825) (\$8,375) (\$8,925) (\$9,475) 14 (\$7,200) (\$7,750) (\$8,300) (\$8,850) (\$9,400) 15 \$9,375 \$8,825 \$8,275 \$7,725 \$7,175 16 \$10,550 \$10,000 \$9,450 \$8,900 \$8,350 0.05 17 \$11,725 \$11,175 \$10,625 \$10,075 \$9,525 0.05 0.05 18 \$12,900 \$12,350 \$11,800 \$11,250
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 10/01/2009 for the course ISE 310L taught by Professor Bottlik during the Spring '06 term at USC.

### Page1 / 18

Ass06_due030908_sol_ - 2.9 (1 point) 5 days per week = 40...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online