{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

fylladio4-2005 - FULLADIO 4 Gr'Algebra Genikì HMMU 2005-06...

Info icon This preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: FULLADIO 4 - Gr. 'Algebra Genikì. HMMU 2005-06 1. (a) Na apodeiqjoÔn oi idiìthtec: (i) (AB ) = B A , (ii) (AB ) = B A (1) (b) Na apodeiqjeÐ ìti an oi pÐnakec B kai Γ eÐnai summetrikoÐ tìte gia opoiond pote pÐnaka A, oi pÐnakec A B A kai AΓA eÐnai summetrikoÐ. (g) Na deiqjeÐ ìti gia kˆje tetragwnikì pÐnaka A isqÔei (Aν ) = (A )ν , ν ∈ N. (d) Na apodeiqjeÐ ìti an o pÐnakac A eÐnai antisummetrikìc tìte o pÐnakac Aν eÐnai summetrikìc an o ν eÐnai ˆrtioc kai antisummetrikìc an o ν eÐnai perittìc. 2. Na upologisjoÔn oi pÐnakec AB kai BA, ìtan A= 8 − 4i 5i −2i . B= 6 3 + 2i 4 + 5i 2 + i 4 + 3i i , 7 6 + 9i 1 − i 3. Na upologistoÔn me qr sh idiot twn oi orÐzousec αβ −α β D1 = −α −β αβ γδ γδ γδ γ −δ kai D2 = λ+α α α β λ+β β γ γ λ+γ . 4. Na lujoÔn oi exis¸seic (me metablht x) λ λ2 x λ2 x λ x λ λ2 =0 kai 1+x 2 3 4 1 2+x 3 4 1 2 3+x 4 1 2 3 4+x = 0. 5. Na upologisjoÔn o antÐstrofoi twn pinˆkwn: sunϕ −hmϕ 0 B = hmϕ sunϕ 0 , 0 01 1111 1 1 −1 −1 Γ= 1 −1 0 0 . 0 0 1 −1 6. Na lujoÔn ta sust mata: (i) x2 − 2x3 + 3x4 =1 x1 − 3x2 + 2x3 + x4 =0 x1 − x2 − 2x3 + 7x4 =2 x1 − 4x3 + 10x4 =3 (ii) kx1 + x2 + x3 = 1 x1 + kx2 + x3 = 1 x1 + x2 + kx3 =1, k∈R 7. Na prosdioristoÔn ìlec oi timèc twn α, β, γ, δ gia tic opoÐec to sÔsthma x1 + x2 + x3 + x4 2x1 − x2 + 3x3 − x4 4x1 − 5x2 + 7x3 − 5x4 x1 − 2x2 + 2x3 − 2x4 = = = = α β γ δ eÐnai sumbibastì. S. Karanˆsioc Endeiktikèc LÔseic FulladÐou 04 1. (a) (i) 'Estw A = (aij ), B = (bij ), AB = (γij ), (AB ) B = (ζij ), B A = (ηij ). Tìte εij = aji , ζij = bji , γij = δji kai = (δij ), = (εij ), A ηij = ζi1 ε1j + ζi2 ε2j + · · · ζin εnj = b1i aj 1 + b2i aj 2 + · · · bni ajn = aj 1 b1i + · · · ajn bni = γji = δij 'Ara (AB ) = B A . (ii) 'Omoia apodeiknÔetai kai h sqèsh (AB )∗ = B ∗ A∗ . (b) EÐnai (A B A) = A B (A ) = AB A ⇒ A B A summetrikìc pÐnakac. 'Omoia kai o AΓA . (g) Apìdeixh me epagwg . (d) Apì A = −A prokÔptei Aν = (−A )ν = (−1)ν (A )ν = (−1)ν (Aν ) ⇒ Aν = (Aν ) , an ν ˆrtioc kai Aν = −(Aν ) , an ν perittìc. 2. Blèpe ˆskhsh 5/selÐda 155 kai apant seic sth selÐda 532 tou biblÐou. 3. EÐnai h ˆskhsh 2/selÐda 174 tou biblÐou: γδ γδ γδ γ −δ = αβγ δ 0 2β 2γ 2δ 0 0 2γ 2δ 00 0 −2δ λ+α α α β λ+β β γ γ λ+γ = λ+α+β+γ λ+α+β+γ λ+α+β+γ β λ+β β γ γ λ+γ D1 = D2 = α β −α β −α −β α β 1 1 1 β (λ + α + β + γ ) β λ + β γ γ λ+γ = α2β 2γ (−2δ ) = −8αβγδ. 100 = (λ + α + β + γ ) β λ 0 γ0λ = = (λ + α + β + γ )λ2 . 4. EÐnai h ˆskhsh 3/selÐda 174 tou biblÐou: 0= λ λ2 x λ2 x λ x λ λ2 = 1 λ2 x 1xλ 1 λ λ2 1 λ2 x = (λ + λ + x) 0 x − λ2 λ − x 0 λ − λ2 λ2 − x 2 = √ 1 = (λ + λ2 + x)(−x2 + (λ + λ2 )x − λ4 + λ3 − λ2 ) ⇒ x = −λ − λ2 x = [λ + λ2 ± 3λ(λ − 1)i]. 2 1 2 3 4 1 2+x 3 4 0 = (x + 10) 1 2 3+x 4 1 2 3 4+x 1 0 = (x + 10) 0 0 2 x 0 0 3 0 x 0 4 0 o x = (x + 10)x3 ⇒ x = 0 x = −10. 5. Blèpe ˆskhsh 5/selÐda 175 kai apant seic sth selÐda 533 tou biblÐou. 6. (i) 0 1 −2 3 1 −3 21 [A|B ] = 1 −1 −2 7 1 0 −4 10 1 0 ∼ ··· ∼ 2 3 1 −3 21 0 1 −2 3 0 0 00 0 0 00 0 1 ⇒ x1 − 3x2 + 2x3 + x4 = 0 0 x2 − 2x3 + 3x4 = 1 0 ⇒ x2 = 1 + 2x3 − 3x4 , x1 = · · · = 3 + 4x3 − 8x4 x3 , x4 ∈ R. (ii) D= k11 1k1 11k 111 = (k + 2) 1 k 1 11k 1 1 1 0 = (k + 2) 0 k − 1 0 0 k−1 = (k + 2)(k − 1)2 D 1 • D = 0 ⇔ k = −2, 1 ⇒ monadik lÔsh h: x = Dx , y = Dy , z = Dz ⇒ x = y = z = k+2 D D • D = 0 ⇔ k = −2, k = 1 Gia: 1 −2 1 11 1 −2 1 1 1 ∼ ··· ∼ 0 1 −1 −1 ⇒ sÔsthma adÔnato. ∗ k = −2 ⇒ 1 −2 1 1 −2 1 0 0 0 3 ∗ k = 1 to sÔsthma eÐnai isodÔnamo me thn exÐswsh x + y + z = 1, opìte z = 1 − x − y kai h genik lÔsh eÐnai h (x, y, z ) = (x, y, 1 − x − y ) = x(1, 0, −1) + y (0, 1, −1) + (0, 0, 1), x, y ∈ R. 7. 1111 2 −1 3 −1 [A|b] = 4 −5 7 −5 1 −2 2 −2 α β ∼ ··· ∼ γ δ 1 0 0 0 11 3 −1 00 00 1 3 0 0 α 2α − β . γ + 3β − 10α δ+α−β 'Ara sÔsthma sumbibastì ⇔ γ + 3β − 10α = 0, δ + α − β = 0, opìte ta zhtoÔmena (α, β, γ, δ ) eÐnai ta stoiqeÐa tou dianusmatikoÔ q¸rou V = {(α, β, γ, δ ) : γ + 3β − 10α = 0, δ + α − β = 0} = {(α, β, 10α − 3β, β − α) : α, β ∈ R} = {α(1, 0, 10, −1) + β (0, 1, −3, 1) : α, β ∈ R} = [(1, 0, 10, −1), (0, 1, −3, 1)]. ...
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern