Day17-slides - Two dimensions - stability Advection...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
1 Atms 502 Numerical Fluid Dynamics Thu., Oct. 19, 2006 10/23/06 Atms 502 - Fal 2006 - Jewett 2 Two dimensions - stability Advection equation now looks like: To determine stability, assume that coefficients u and v are constant Let max u(x,y)=U, max v(x,y)=V This is called local stability As we will see, stability restrictions in 2-D are greater than in 1-D. " t + u ( x , y ) x + v ( x , y ) y = 0 10/23/06 Atms 502 - Fal 2006 - Jewett 3 Two dimensions - stability Problem : 2d advection - stability Approach : discrete dispersion relation Method : look at 2-d leapfrog Result: 2 t # + U 2 x + V 2 y = 0, or i , j n + 1 $ i , j n $ 1 2 % t + U i + 1, j n $ i $ 1, j n 2 % x + V i , j + 1 n $ i , j $ 1 n 2 % y = 0 i = 1: nx , j = ny sin( # t ) = μ sin( k # x ) + $ sin( l # y ) 10/23/06 Atms 502 - Fal 2006 - Jewett 4 Two dimensions - stability Require ω is real. real requires | μ |+| ν |<1 sin( t ) can be > 1 if is complex… sin( a ) = sin( x + iy ) = sin( x )cos( iy ) + cos( x )sin( iy ) = sin( x )cosh( y ) + i cos( x )sinh( y ) Wikipedia
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
2 10/23/06 Atms 502 - Fal 2006 - Jewett 5 Two dimensions - stability Another approach: (apologies for multiple uses of “i”) " 2 t # + U 2 x + V 2 y = 0 Let " x = " y = " s : i , j n + 1 = i , j n $ 1 $ U " t " s i + 1, j n $ i $ 1, j n ( ) $ V " t " s i , j + 1 n $ i , j $ 1 n ( ) ˜ n + 1 = ˜ n # 1 # U $ t $ s e ik $ x # e # ik $ x ( ) # V $ t $ s e il $ y # e # il $ y ( ) = ˜ n # 1 # 2 i $ t $ s U sin k $ x + V sin l $ y ( ) ˜ n Mistake on notes Von Neumann method: 10/23/06 Atms 502 - Fal 2006 - Jewett 6 Two dimensions - stability Continuing Von Neumann: ˜ n + 1 = ˜ n # 1 # 2 i $ t $ s U sin k $ s + V sin l $ s ( ) ˜ n ˜ % n + 1 = ˜ n ˜ n + 1 ˜ n + 1 & ( ) * + = # 2 i $ t / $ s ( U sin k $ s + V sin l $ s ) 1 1 0 & ( ) * + ˜ n ˜ n & ( ) * + # 2 i $ t / $ s ( U sin k $ s + V sin l $ s ) # , 1 1 0 # = 0 10/23/06 Atms 502 - Fal 2006 - Jewett 7 Two dimensions - stability Continuing Von Neumann: " 2 i # t / # s ( U sin k # s + V sin l # s ) " $ 1 1 0 " = 0 2 " " 2 i # t # s U sin k # s + V sin l # s ( ) % & ( ) * " 1 = 0 = " 2 i # t # s U sin k # s + V sin l # s ( )± " 4 # t 2 # s 2 () 2 + 4 + , - - .
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 10/06/2009 for the course ATMOSPHERI 502 taught by Professor Jewett during the Spring '09 term at University of Illinois at Urbana–Champaign.

Page1 / 6

Day17-slides - Two dimensions - stability Advection...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online