Ferroalloy Production - 12.4 Ferroalloy Production 12.4.1...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 12.4 Ferroalloy Production 12.4.1 General Ferroalloy is an alloy of iron with some element other than carbon. Ferroalloy is used to physically introduce or "carry" that element into molten metal, usually during steel manufacture. In practice, the term ferroalloy is used to include any alloys that introduce reactive elements or alloy systems, such as nickel and cobalt-based aluminum systems. Silicon metal is consumed in the aluminum industry as an alloying agent and in the chemical industry as a raw material in silicon-based chemical manufacturing. The ferroalloy industry is associated with the iron and steel industries, its largest customers. Ferroalloys impart distinctive qualities to steel and cast iron and serve important functions during iron and steel production cycles. The principal ferroalloys are those of chromium, manganese, and silicon. Chromium provides corrosion resistance to stainless steels. Manganese is essential to counteract the harmful effects of sulfur in the production of virtually all steels and cast iron. Silicon is used primarily for deoxidation in steel and as an alloying agent in cast iron. Boron, cobalt, columbium, copper, molybdenum, nickel, phosphorus, titanium, tungsten, vanadium, zirconium, and the rare earths impart specific characteristics and are usually added as ferroalloys. United States ferroalloy production in 1989 was approximately 894,000 megagrams (Mg) (985,000 tons), substantially less than shipments in 1975 of approximately 1,603,000 megagrams (1,770,000 tons). In 1989, ferroalloys were produced in the U. S. by 28 companies, although 5 of those produced only ferrophosphorous as a byproduct of elemental phosphorous production. 12.4.2 Process Description A typical ferroalloy plant is illustrated in Figure 12.4-1. A variety of furnace types, including submerged electric arc furnaces, exothermic (metallothermic) reaction furnaces, and electrolytic cells can be used to produce ferroalloys. Furnace descriptions and their ferroalloy products are given in Table 12.4-1. 12.4.2.1 Submerged Electric Arc Process - In most cases, the submerged electric arc furnace produces the desired product directly. It may produce an intermediate product that is subsequently used in additional processing methods. The submerged arc process is a reduction smelting operation. The reactants consist of metallic ores (ferrous oxides, silicon oxides, manganese oxides, chrome oxides, etc.) and a carbon-source reducing agent, usually in the form of coke, charcoal, high- and low-volatility coal, or wood chips. Limestone may also be added as a flux material. Raw materials are crushed, sized, and, in some cases, dried, and then conveyed to a mix house for weighing and blending. Conveyors, buckets, skip hoists, or cars transport the processed material to hoppers above the furnace. The mix is then gravity-fed through a feed chute either continuously or intermittently, as needed. At high temperatures in the reaction zone, the carbon source reacts with metal oxides to form carbon monoxide and to reduce the ores to base...
View Full Document

This note was uploaded on 10/08/2009 for the course CME MAT E 630 taught by Professor Dr. during the Fall '09 term at University of Alberta.

Page1 / 20

Ferroalloy Production - 12.4 Ferroalloy Production 12.4.1...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online