light-bending - Estimating light bending using...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Estimating light bending using order-of-magnitude physics Sanjoy Mahajan Cavendish Laboratory Cambridge CB3 0HE sanjoy@mrao.cam.ac.uk 5 June 2002 Abstract. I estimate the bending of light by the sun, showing how to use dimensional analysis and order-of-magnitude physics in A-level physics. Contents 1 Dimensional analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1 Finding parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Dimensionless groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Finding parameters, again! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Dimensionless groups, again! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5 Drawing conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Physical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Interpreting the dimensionless group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Approximate Newtonian analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 More exact Newtonian analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 General relativity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 History of this test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Rocks, birds, and people feel the effect of gravity. So why not light? The analysis of that question is a triumph of Einsteins theory of general relativity. I can calculate how much gravity bends light by solving the equations of general relativity: x + = 0 . (1) This notation is really shorthand for ten equations, each a partial differential equation; the set is rich in mathematical interest but is a nightmare to solve. The equations are numerous thats one problem but worse, they are not linear. So the standard trick, which is to guess a type of solution and form new solutions by combining the basic types, does not work. You can spend a decade learning advanced mathematics to solve the equations exactly. Or you can accept the great principle of analysis: When the going gets tough, lower your standards. Thatsaccept the great principle of analysis: When the going gets tough, lower your standards....
View Full Document

Page1 / 8

light-bending - Estimating light bending using...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online