prac exam 1 - General Physics ll - Exam l Solutions -...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: General Physics ll - Exam l Solutions - Spring 2002 t'xleJ/Ml/My Web Filesheactheeclt/ng-examI-soln-sO2.htm lg, ’ GENERAL PHYSICS II - EXAM I SOLUTIONS - SPRING 2002 PROBLEM SCORE l. x 25 2. z 25 3. ____/ 25 TOTAL SCORE / mo 4. x 25 ,1, _ ‘59,)" PROBLEMS ‘74,)» l. A mass m = no g is attached to a spring with a spring constant I: = 3.00 N/m. The mass oscillates / along a horizontal frictionless surface. At time t - 0 the spring is stretched LOO cm from its equilibrium position and the mass has a velocity of+ 5.00 cm/s. a) What is the period of oscillation of the mass? b) What is the maximum speed of the mass? c) Calculate the amplitude and the phase constant for the oscillation of the mass. d) If everything is kept the same. except that one were to double the initial displacement of the mass. would the following quantities increase. decrease or remain the same: (i) frequency of oscillation. (ii) phase constant. (iii) total energy of the syStem. and (iv) maximum acceleration. _ _ _,__ “I”-.. /v a "j W ._._ A l : wt : 5: D ra‘J/g " i " .0. l1 mtg Tflti ; 5",” ': -J- 2 G 5- 5.0}; \ 1 2. 17-) Er WM: 2 {we 4—;Lx, -g.‘ _ if 3 p __ I, )7 A“: ; fr”,+ 1%";- = Y”? * “3x0 3 7 5:95.- + 5/9053 Hz \J/ [4‘ = 101:»); /’ I‘ I'll ,’ 1",r (I . , ‘ r . .1 - ~ \ ms ; -. ~, . 4 *_ > - ( (3/ C A ’2’,” "’44 vi. '1, 5:”: a g -, A." 1.,,__« #1 { [Acuity-my y, é - , H l ' 'r‘J/ "' i I 7 ,_ .. ,1 .l' I 1 l,,‘ 7;, [1‘7‘ 7 “y »" ' Ir,7,"\ , , ,‘ Tum ‘ 7."' ‘7'. ~ I I‘ I I "Qt xZ/ (Hr, ,p "1/?" . «J .... c. ' _rvr cv’ ~ ) .7, \/ 2! ‘ $:r.¢'€ E .»,. ire“, lily“: / ., .zzy-ruaci‘? X‘, €KCY?:>;: | ‘ trrrgl'r, - z. . - I , ~- \ \_// Id, “flax - L) XM H‘CrFLI).A} /, ;ACr(‘:.U.:-,L c I ( >1. Mir-Hr nCif-‘JZd‘GX : Z(, n [.1 l of 5 4/29/2002 1:36 PM General Physics ll - Exam l Solution: - Spring 2002 fileJI/lfl/My Web Files/teach/teach/gp2-examl-solnvso2.htm 3 ,xyfi'z. Whrcc charges ol‘ equal magnitude. q. are fixed at the corners of an equilateral triangle with sides of length a. The charge at the upper corner of the triangle is positive and the other two charges ue negative. (:1) Calculate the electric force. F. (in unit vector notation) on I charge of +3q at point P (the origin of the xy coordinate system) shown in the diagram. Calculate F in terms ofq. a. a nudge. lb) Where could one place a fourth charge of -4q. such that the force on the charge at P would be zero? .2 — 7 ‘7 , ,- , (“'4' i5, = r. a re J t 47 3 5 p: 2 7:4}? )0 Hill" ‘3‘; ' 170/94“, k’Ve 5“““ CJ—a—yc. 4-13 {-7.1 55"": d:$'f,t€""¢' -5? _ I .— ,,. A. . f3 1",; 4rvvs ;,:' r -? l '1" 2~ «J I i A ‘r an: " I" ’ Ti. 79:" ,1 4' ,. I 5' k3" ~ ’ "l3 (3 g viz l Nu Law-#4; m l '11! {a r; \ .: l , - t\,\ Ir. _ /’,t.. ‘i (“i ’ ’" awn/«>04 V “w L A / r: r - 4”; (j \ 1,1,0» _/ '7 " + -: .— (3’) v-ngj ‘7"; VIJ‘Lf & 51.1 5 " {V6}! r-K / F2; 1 “a l ‘ fl 7 7 r 5d“ at» 3.5 rig-55H”. and. win “The? ILL 4’10 CA‘fla /' ' "‘5 ? WM} 7, Fl¢c¢ T ALoVb 7 1.17;? +y-awt5_ \J/fl 4, t,’ 19a tum-.1 : I!th 432L339, : “Le " - MM; . : mm in, ‘ {a a 7 flat; = ;: J ,— \ ,_A.1»~ .1 TI 4,. I if a" 4 rt, (, (.7 to I ‘~ { \UA \ L 1 z / _ 4 " V J i V’ I) h} ‘ \ {l1 1 {Ev 9’ t 9 _ ‘ - v k \ “an —1-; gum" [7 X-O I. - V3 \ 1 F \l \ ' A \ \ ( ' w; twill, L. JKST a" 0‘? ("MM l7 ‘ - 2 of 5 4/29/2002 l:36 PM General Physics ll - Exam l Solutions - Spring 2002 fileJI/Hl/My Web Flies/teacMcuch/ng-examl-soln-sOZhun 6 , “S' 9 3. A thin glass rod is hent into a semicircle of radius r. A charge +q is uniformly distributed along the upper half 2/ and a charge of —q is unifomtly distributed along the lower half. as shown in the figure. a) What are the charge densities for the upper and lower halves of the semicircle? b) What is the magnitude and direction of the electric field at P. the center of the semicircle? 4 4 fi/ . -, o- ‘x {" . I In.i+- \ :’ 1 r, (J) .1 1m! /+ L‘, ‘27-) WT i Mi in” 19"” )"k‘; A " 17 = 5 k/ 1' (gr) pr X f: f (,1. :/.. “I” a Jfflr l‘ajsr In}; J!M;Clr(}( 'T r" . IV : r r‘ '3- .54- / gi't'v‘r'l; ""11: I. a «.4 "a; 4 ’0’“; j l " ' . d7 1 i 1 x I J 7 .3 J, r 7103‘: x -[p/m w} i- f 52 (A / 91:} r57.“ 170‘ yv/V .fpt Jv-v’ 5 011,6. i- A 7 l ._ 0 _ J T: c 'r:"L-,l:'£ ai-‘JS any») ,y , 71-.vrmar 5 f0). .4 29"” ,P "I, f. , - aL ‘ — J \/r K v _ ‘ FAQ, 7'51] Willi-7 y” "“ (J A», 2‘; 71—; -(J 1.19. Mt! 4M j‘m" 04 E a 1- f, ‘ Jr}? ,' - 1;? 5c: '2. - , » 1/; M? ~ r g , i: .21 l?’ A V *7 .-. tin "p t," ' , l » J/f I :- QVQ’ “M a?) uni (h r a J //. f , 0 ",4 w A)?" r ' I 9"" K 7,; r v” ’ it / — ‘ rr57 I” ‘1 15, : L )Jp/ ' 7- )JE ,1 (-1» ‘ 1’. ( , 1 a ' I I \ pm . ’ U, .7 ,r J — 2i (’9 i f 9 — J | g ' ail . = A A5 _ l 9/] ) f — VA?" \ f r T: .4 ' v) f I“ 1 \ I ’5' V r 9 1 w ‘ 7.. a 05 .. \ V / ‘. C 10 \ A’J-fi f z __:LM’-a:o'- ’- 1 g WI I, «Y1 "1'59 7 o (H , 117:, I .1, x?- V . i 5 M! r t'jf) ' r 1. ,. r « e , .71 i ,: , i - l as ".77; ‘w’ r J, 77"”, /- ~r ‘ '3 ( ) e I 1 -5- — 34.; \\ , r’r .( .__,/ ' A, a: i f '_,_;.,-r r ’ " — 1. i ll C ‘\ \‘\. 3 of5 4/29/2002 1:36 PM General Physics ll - Exam I Solutions - Spring 2002 fikJ/leMy Web Files/moh/teach/ng-exunl-soln-sOthm O c Q 4. a. A small portion near the center of I very large nonconducting slab of thickness d w ' and positive uniform volume charge ’4, 6370\‘35 density +p,, is shown. A cylindrical L!” Gaussian surface of radius a enclous part / of the slab. Let EL and 5‘ represent the magnitude of the electric field at the left and right ends of the cylinder. which are at different distances from the slab. / i. Find the charge enclosed by the fa Gaussian surface. ‘ _ r~ __ 9'} //’/_\r flirt ' ?"'«1/'N~2’)M: Li/rLOJLWOIJ’J 5 ; I ~ 1 a“ “3. Side vtew t\/ m T7,,» _ ii. In the side view drawing. sketch electric field lines outside the slab. , a l ls the magnitude of EL greater than, less than. wequmo 5.? E r..\ ’; ~——’ 1 (z; a: t J i . in. Find the flux through the entire G ' ' i . a - .. dimensions. ’ ‘ .usstan surface tn terms of E. And the given ‘ r ‘ t I 7.‘ - 'fl 'I‘1 ,r-r- ‘Iijr' " M" ' EL [‘L Jr LIL/'9 7 Edi/'7’" "4 f7" '0' I E I (— t ,2 I z : _ /" (:3: 3 2W9" ER ‘ iv. Use Gauss' law to find the electric field E. in terms of the given dimensions and the volume charge density p. a a , e —- .1 ./ 5‘ a 755 (1' to; ._,a ’ 4" -0a1 ’ h I A ‘ D [‘i' : if 1- 0 b. A positive point charge +Q, is now placed to the left of the charged slab and the Gaussian surface as shown. (Assume the charge distribution within the slab is ,» - ‘ ‘ unaffected by the point charge +Q,) ' d L‘E ~’ A '7 s y .7 i " > i. Will the absolute value of the Hunt u h the right ' l “9; end cap of the Gaussian surfaceffiu a: decrease. I l l _ or remain the same? Explain. " " , r- ‘\ , , _ _. ' 5 " .)J7}l r‘ ,, é], ‘5 Jet» l‘.".-ie“ ,Ji : '- '0"?! 040 - ' ' .' ., ._ 4 r. - New I _ .,. _ I w sf" ,»- end ca I , [,1 Le: ;~),’-,i{. £12.“; ‘, D lair/t 4.. A‘filfi, 9.1.7'4140', -~‘ 4 l.— p w.) l r l p 1‘ ' U I 0 ‘ ' H e 4,. «ma/1 1;. 1".17/9 191) u —... /' Tar TIL rth. 2-4 {if} s.d . it. Will the absolute value of the flux through th _n" V I a new / I . 9M” surface increase. dureau. charisma E) (’ 1/; f ~"5arneZ'Explaini "\ . .~_ . ‘. 3'2; ."uit due 70 2.0. w i” (it"ww In"; I” “4‘ 1 . ‘1 "‘ ' L V” . ~I e- L- a. >1 "" “Y’a's‘f' I L”,th 1/2 _f"’«U-j_'-, £747, W9 On :07'!‘ .IYI.‘! " lrijryega Jr”; a ~, .t an," 7,: .' urw’d r‘l'-."--1'ri'm' 5W face. M “'“l' I r61!” f Lg” .( f 7""1' i'Jx reivv ,: 7.1-. 5.: r-<¢ Fiht'e’ “Why ""0‘ A?“ aim/’2 “rah, UL, ,. .;: ,:1 / : .. Fry“ (35¢ ycz' Lav 7‘} ."T “'1‘ “my” 17/ k (/9. in 3in Jr: 5 1‘9v5‘ 470)" any Cit/r13. .‘v 3'44»- - ’ : 7 PM 4°f5 4/29/2002 I 3 ...
View Full Document

This note was uploaded on 10/12/2009 for the course PHYS physics 2 taught by Professor Kogan during the Spring '08 term at University of Cincinnati.

Page1 / 4

prac exam 1 - General Physics ll - Exam l Solutions -...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online