This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: midterm 03 BAUTISTA, ALDO Due: Nov 15 2006, 8:00 pm 1 Gravity ~ F 21 = G m 1 m 2 r 2 12 r 12 , for r R , g ( r ) = G M r 2 G = 6 . 67259 10 11 Nm 2 /kg 2 R earth = 6370 km, M earth = 5 . 98 10 24 kg Circular orbit: a c = v 2 r = 2 r = 2 T 2 r = g ( r ) U = G mM r , E = U + K = GmM 2 r F = dU dr = mG M r 2 = m v 2 r Keplers Laws of planetary motion: i ) elliptical orbit, r = r 1 cos r 1 = r 1+ , r 2 = r 1 ii ) L = rm r t A t = 1 2 r r t = L 2 m = const. iii ) G M a 2 = 2 a T 2 1 a , a = r 1 + r 2 2 , T 2 = 4 2 GM r 3 Escape kinetic energy: E = K + U ( R ) = 0 Fluid mechanics Pascal: P = F 1 A 1 = F 2 A 2 , 1 atm = 1 . 013 10 5 N/m 2 Archimedes: B = M g , Pascal=N/m 2 P = P atm + gh , with P = F A and = m V F = R P dA g R h ( h y ) dy Continuity equation: Av = constant Bernoulli: P + 1 2 v 2 + gy = const, P Oscillation motion f = 1 T , = 2 T SHM: a = d 2 x dt 2 = 2 x , = d 2 dt 2 = 2 x = x max cos( t + ), x max = A v = v max sin( t + ), v max = A a = a max cos( t + ) = 2 x , a max = 2 A E = K + U = K max = 1 2 m ( A ) 2 = U max = 1 2 kA 2 Spring: ma = kx Simple pendulum: ma = m = mg sin Physical pendulum: = I = mgd sin Torsion pendulum: = I = Wave motion Traveling waves: y = f ( x vt ), y = f ( x + vt ) In the positive x direction: y = A sin( kx t ) T = 1 f , = 2 T , k = 2 , v = k = T Along a string: v = q F Reflection of wave: fixed end: phase inversion open end: same phase General: E = K + U = K max P = E t = 1 2 m t ( A ) 2 Waves: m t = m x x t = m x v P = 1 2 v ( A ) 2 , with = m x Circular: m t = m A A r r dt = m A 2 rv Spherical: m t = m V 4 r 2 v Sound v = q B , s = s max cos( kx t ) P = B V V = B s x P max = B s max = vs max Piston: m t = m V A x t = Av Intensity: I = P A = 1 2 v ( s max ) 2 Intensity level: = 10log 10 I I , I = 10 12 W/m 2 Plane waves: ( x,t ) = c sin( kx t ) Circular waves: ( r,t ) = c r sin( kr t ) Spherical: ( r,t ) = c r sin( kr t ) Doppler effect: = vT , f = 1 T , f = v Here v = v sound v observer , is wave speed relative to moving observer and = ( v sound v source ) /f , detected wave length established by moving source of frequency f . f received = f reflected Shock waves: Mach Number= v source v sound = 1 sin Superposition of waves Phase difference: sin( kx t )+sin( kx t ) Standing waves: sin( kx t )+sin( kx + t ) Beats: sin( kx 1 t )+sin( kx 2 t ) Fundamental modes: Sketch wave patterns String: 2 = , Rod clamped middle: 2 = , Openopen pipe: 2 = , Openclosed pipe: 4 = Temperature and heat...
View Full
Document
 Fall '08
 Turner
 Gravity

Click to edit the document details