HW5SOL - HW #5. Chapter 6.1 # 3. f(t) is a continuous...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: HW #5. Chapter 6.1 # 3. f(t) is a continuous function. #4. F(t) is a piecewise continuous function and have a jump discontinuity at t= 1. #7. f t f t F s 1 2 s e f t dt dt s b for |s| 1 2 1 s b e 1 s b e 1 1 2 s b 1 s b cosh bt 2 #10. f t sinh bt 2 f t F s 1 2 1 2 1 2 e f t dt dt s s 1 a 1 a b e b s 1 a s b 1 a s b e b a b for |s a| #18. f t f t F s e f t dt 1 2 dt Note Integratoin by part a t b t dt a 1 s n s a a t t a t b t , a t b t dt b n s a t dt dt n n 1 t s a n n s s n! a 1 a 2 t n! s a| a dt for |s #27. a) Show that t change of variables Then t By the definition of p dt x s dt p s 1 x st, dx sdt dx s 1 s x dx 1 from Prob. 26 t p s 1 b) Show that t , where n is a positive integer From Prob. 26 p and Therefore, t n! s s 0 1 p p 1 1 1 n s p 0 n s 1 n n s n n 1 n! 1 s n! s c) Show that t / 1 s 1 s dx s 0 t change of variables then t x 1 2 s x 2ydy 1 s dx y , dx dy 1 s dx d) Show that t / / 2s t 1 s / d 2ydy 2 s 0 change of variables then t x 2 s y , dx d d Note Integratoin by part a t b t dt a Then t 2 s d 2 s 1 s 1 2 d 1 2 2s d , a t b t b a t b t dt Chapter 6.2 # 8. F s 8s s s 4s 4 a Therefore F s 5s s F s #10. F s 12 as s 5, b 4 4 3 s b 4 c s 4, c 5s s 4 s a c s s s bs 4 4c 3 4 4 3 s 3 5 cos 2 2 sin 2 2s 3 s 2s 10 2 s s 2s 1 1 5 9 2 s s 1 5 e 3 1 3 sin 3 5 3 s 3 1 3 F s 2e cos 3 #23. y 2y y 4e , y 0 2, y 0 1 Take the Laplace transformation of the equation, y y 4e Then s Y s sy 0 s Y s s 1 s y 0 2s 4 2s 1 s 2t e s 1 1 22 s 1 Y s 2 s 1 s 1 y t s Y s sY s 4 s 1 sy 0 y 0 y 0 2y 0 4 s 1 2s 2s 2s 1 22 s 1 2e Y s 3 s 3 2s 2 s 1 s 1 1 1 4 s 1 2sY s 1 Y s te #28. F s e f t dt a) Show that F s dF ds b) Show that F s t f t d ds tf t e f t dt e f t dt s tf t e dt tf t d F ds d ds e f t dt e s f t dt t f t e dt t f t Chapter 6.3 # 3. g t f t g t u t , where f t t 0, , 0 t t #6. g t t 1 u t t t 1 t 1 2 t 2 2 t t 2 t 0, 1, 2 , 3 , 2 u t 0 1 2 t 1 2 3 3 t 3 u t t 3 0, 1, 2t, 0, 0 1 2 t 1 2 3 3 g t #15. f t f t t t 0, , 0, t 0 t t 2 2 t u t u t 2 u take the Laplace transformation of f t f t F s e s e s e s #23. F s F s set G s s s s s s 2 e 4s 4 s s s 2 2 1 2 2 1 e 2 e 4s 4 Take the inverse Laplace transformation, G s Therefore, F s G s e g t 1 u t e cosh t 1 u t g t e cosh t Chapter 6.4 # 6. y 3y 2y u t , y 0 0, y 0 1 Take the Laplace transformation of the equation, y y s Y s sY s sy 0 y 0 y 0 u t Then s Y s sy 0 s Y s e s s 3s 2 a Y s set F s e s s 3s 2 s s 1 , b 2 1 3s y 0 3s 1 3s e s 3y 0 1 a s e s b s 1, e 1 s 2 s 1 s 1 1 1 2 s 1 1 s 1 2 s c 2 s d 1 s e 2 2Y s e s 3sY s 2 Y s 2 1, c 2 e 1 ,d 2 e 2 1 s 2 s 1 s 1 2 Take the inverse Laplace transformation of F s , F s e 2 Therefore, Y s e 2 u t 1 2 F s 2e 1 s 1 e s 1 2 e e F s 1 u t 1 2 2e 2e e e #9. y y g t t , 2 0 3, t 6 6 , y 0 0, y 0 1 g t can be written as g t t 1 2 u t 3u t t 2 1 t 2 6 u t Take the Laplace transformation y g t s s Y s 11 2s 1 Y s sy 0 y 0 1e 2 s 11 2s 1 e 2s s e 1 2 1e 2 s 1 Y s 1 1 2s s 1 1 s 1 1 1 s s 1 s 1 s 1 1 1 1 1 2 s Take the inverse Laplace transformation Y s y t 1 t 2 sin t u t 2 t 6 sin t 6 sin t #16. u 1 u 4 u g t u / t u / t , u 0 0, u 0 0 a) b) Take the Laplace transformation u u g t s 1 s 4 1 U s s U s sU s e su 0 / u 0 e / / u 0 s e s s e / s 1 1/4 s s s s s U s Set e e e / e e e / s s 1 s 1 s 1 1 1/8 63/64 / / 1/4 1/4 s / / 1/8 1/8 H s Then H s 1 s 1 s 1 s s s 1/8 1/8 1/8 63/64 s s 1/8 1/8 s 1/8 63/64 1/8 37/8 1 37 s 37/8 1/8 37/8 s 1/8 Take the inverse Laplace transformation of H s H s Therefore, U s ,where e u t h t e 3 2 H s u t h t u t 5 2 h t 1 e cos 37t 8 1 37 sin 37t 8 h t 1 e cos 37t 8 1 37 sin 37t 8 c) d) From part(c) as k gets larger, the maximum value of y(t) gets larger. Also the smallest value of k, kmin, for max(y(t)) = 2 is larger than 2. Hence, to get the kmin the maximum values of y(t) are observed while k is increasing by 0.01 usin Matlab. e) From the figure 25.68 Chapter 6.5 # 4. y y 20 t y 20 t s Y s 1 Y s 3 , y 0 1, sy 0 20e 20e s s 1 cosh t s y 0 y 0 0 Take the Laplace transformation s Y s 3 Substitute these into the equation and rewrite it 20e 1 s 20 sinh t Take the inverse Laplace Transformation Y s y t 3 u t #9. y y u / t 3 t 3 2 u t , y 0 0, y 0 0 Take the Laplace transformation u / t 3 2 e s / 3e / 3 t u t e s e s e s s s 1 / s Y s e s s e Set 1 Y s 3e s 1 s 3e e / e s e 1 s s 1 3e s 1 1 e 1 s 1 3e s 1 H s 1 s s s 1 u 2 1 cos t Take the inverse Laplace transformation of H s H s Therefore, e e H s h t 1 / h t t 2 h t u t 2 u 1 t cos t 2 u t cos t Finally take the inverse Laplace transformation of Y s Y s e e 2 1 s u t s s 1 1 cos t 3e s y t 3 u 2 1 t 1 cos t 2 u 3 sin t t #14. y a) 1/2 y Take the Laplace transform t 1 s 2 s e 1/4 1 e 1 y 2 y t 1 y y t 1 , y 0 0, y 0 0 s Y s Set H S e s/2 1 Y s e 4 15 s 15/4 e 15/16 1/4 s 1 15/16 s 15/4 15/16 1/4 Take the inverse Laplace transformation of H S H s Therefore, Y s 4 15 H s e e sin 15 t 4 y t 4 15 e sin 15 t 4 1 u t b) y t reaches the maximum when dy dt 1 15 e sin 0 15 t 4 15 t 4 1 e cos 15 t 4 1 e 1 15 sin 1 cos 15 t 4 1 e 1 1 15 cos t 15 4 1 , where atan 1 15 0.2527 In order to get dy/dt = 0 15 t 4 Therefore, t c) 1/4 y Take the Laplace transform t 1 s 4 1 e 1 y 2 y t 1 2.3613 and y t 0.711531 1 2 s 1 Y s e Y s Set s e s/4 1 s e 1/8 63/64 8 37 s 37/8 e 63/64 1/4 H S s 37/8 63/64 1/8 Take the inverse Laplace transformation of H S H s Therefore, Y s 8 37 H s e y t 8 37 e sin 37 t 8 1 u t e sin 37 t 8 For the maximum value of y t dy dt 1 37 e 1 37 sin 37 t 8 37 t 8 1 e cos 37 t 8 1 1 e sin 1 cos 37 t 8 e 1 37 1 cos t 63 8 1 atan 1 317 0.1253 0, where Therefore, 37 t 8 and t d) y Take the Laplace transform t s Y s s e s e 1 s /2 1 /4 s 1 1 Y s e e y y t 2.4569 and y t 1 2 0.833508 1 1 1 /4 s 1 /2 /4 e 1 /4 Therefore, Y s y t 1 1 /4 e sin 1 /4 t 1 u t For the maximum value of y t dy dt e 2 1 /4 2 1 e 1 /4 4 1 /4 sin sin 1 1 /4 t /4 t 1 1 e cos cos 1 1 /4 t 1 1 /4 t e , where cos 1 /4 t 1 0 atan 2 1 /4 For 0, 0 then t 1 2 which gives us t 1 2 2.5708 and y t 1.00000 As decreases t1 and ymax get larger. ...
View Full Document

This note was uploaded on 10/12/2009 for the course MAE 210792200 taught by Professor Youssef during the Spring '09 term at UCLA.

Ask a homework question - tutors are online