{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

HW5SOL

# HW5SOL - HW#5 Chapter 6.1 3 f(t is a continuous function#4...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: HW #5. Chapter 6.1 # 3. f(t) is a continuous function. #4. F(t) is a piecewise continuous function and have a jump discontinuity at t= 1. #7. f t f t F s 1 2 s e f t dt dt s b for |s| 1 2 1 s b e 1 s b e 1 1 2 s b 1 s b cosh bt 2 #10. f t sinh bt 2 f t F s 1 2 1 2 1 2 e f t dt dt s s 1 a 1 a b e b s 1 a s b 1 a s b e b a b for |s a| #18. f t f t F s e f t dt 1 2 dt Note Integratoin by part a t b t dt a 1 s n s a a t t a t b t , a t b t dt b n s a t dt dt n n 1 t s a n n s s n! a 1 a 2 t n! s a| a dt for |s #27. a) Show that t change of variables Then t By the definition of p dt x s dt p s 1 x st, dx sdt dx s 1 s x dx 1 from Prob. 26 t p s 1 b) Show that t , where n is a positive integer From Prob. 26 p and Therefore, t n! s s 0 1 p p 1 1 1 n s p 0 n s 1 n n s n n 1 n! 1 s n! s c) Show that t / 1 s 1 s dx s 0 t change of variables then t x 1 2 s x 2ydy 1 s dx y , dx dy 1 s dx d) Show that t / / 2s t 1 s / d 2ydy 2 s 0 change of variables then t x 2 s y , dx d d Note Integratoin by part a t b t dt a Then t 2 s d 2 s 1 s 1 2 d 1 2 2s d , a t b t b a t b t dt Chapter 6.2 # 8. F s 8s s s 4s 4 a Therefore F s 5s s F s #10. F s 12 as s 5, b 4 4 3 s b 4 c s 4, c 5s s 4 s a c s s s bs 4 4c 3 4 4 3 s 3 5 cos 2 2 sin 2 2s 3 s 2s 10 2 s s 2s 1 1 5 9 2 s s 1 5 e 3 1 3 sin 3 5 3 s 3 1 3 F s 2e cos 3 #23. y 2y y 4e , y 0 2, y 0 1 Take the Laplace transformation of the equation, y y 4e Then s Y s sy 0 s Y s s 1 s y 0 2s 4 2s 1 s 2t e s 1 1 22 s 1 Y s 2 s 1 s 1 y t s Y s sY s 4 s 1 sy 0 y 0 y 0 2y 0 4 s 1 2s 2s 2s 1 22 s 1 2e Y s 3 s 3 2s 2 s 1 s 1 1 1 4 s 1 2sY s 1 Y s te #28. F s e f t dt a) Show that F s dF ds b) Show that F s t f t d ds tf t e f t dt e f t dt s tf t e dt tf t d F ds d ds e f t dt e s f t dt t f t e dt t f t Chapter 6.3 # 3. g t f t g t u t , where f t t 0, , 0 t t #6. g t t 1 u t t t 1 t 1 2 t 2 2 t t 2 t 0, 1, 2 , 3 , 2 u t 0 1 2 t 1 2 3 3 t 3 u t t 3 0, 1, 2t, 0, 0 1 2 t 1 2 3 3 g t #15. f t f t t t 0, , 0, t 0 t t 2 2 t u t u t 2 u take the Laplace transformation of f t f t F s e s e s e s #23. F s F s set G s s s s s s 2 e 4s 4 s s s 2 2 1 2 2 1 e 2 e 4s 4 Take the inverse Laplace transformation, G s Therefore, F s G s e g t 1 u t e cosh t 1 u t g t e cosh t Chapter 6.4 # 6. y 3y 2y u t , y 0 0, y 0 1 Take the Laplace transformation of the equation, y y s Y s sY s sy 0 y 0 y 0 u t Then s Y s sy 0 s Y s e s s 3s 2 a Y s set F s e s s 3s 2 s s 1 , b 2 1 3s y 0 3s 1 3s e s 3y 0 1 a s e s b s 1, e 1 s 2 s 1 s 1 1 1 2 s 1 1 s 1 2 s c 2 s d 1 s e 2 2Y s e s 3sY s 2 Y s 2 1, c 2 e 1 ,d 2 e 2 1 s 2 s 1 s 1 2 Take the inverse Laplace transformation of F s , F s e 2 Therefore, Y s e 2 u t 1 2 F s 2e 1 s 1 e s 1 2 e e F s 1 u t 1 2 2e 2e e e #9. y y g t t , 2 0 3, t 6 6 , y 0 0, y 0 1 g t can be written as g t t 1 2 u t 3u t t 2 1 t 2 6 u t Take the Laplace transformation y g t s s Y s 11 2s 1 Y s sy 0 y 0 1e 2 s 11 2s 1 e 2s s e 1 2 1e 2 s 1 Y s 1 1 2s s 1 1 s 1 1 1 s s 1 s 1 s 1 1 1 1 1 2 s Take the inverse Laplace transformation Y s y t 1 t 2 sin t u t 2 t 6 sin t 6 sin t #16. u 1 u 4 u g t u / t u / t , u 0 0, u 0 0 a) b) Take the Laplace transformation u u g t s 1 s 4 1 U s s U s sU s e su 0 / u 0 e / / u 0 s e s s e / s 1 1/4 s s s s s U s Set e e e / e e e / s s 1 s 1 s 1 1 1/8 63/64 / / 1/4 1/4 s / / 1/8 1/8 H s Then H s 1 s 1 s 1 s s s 1/8 1/8 1/8 63/64 s s 1/8 1/8 s 1/8 63/64 1/8 37/8 1 37 s 37/8 1/8 37/8 s 1/8 Take the inverse Laplace transformation of H s H s Therefore, U s ,where e u t h t e 3 2 H s u t h t u t 5 2 h t 1 e cos 37t 8 1 37 sin 37t 8 h t 1 e cos 37t 8 1 37 sin 37t 8 c) d) From part(c) as k gets larger, the maximum value of y(t) gets larger. Also the smallest value of k, kmin, for max(y(t)) = 2 is larger than 2. Hence, to get the kmin the maximum values of y(t) are observed while k is increasing by 0.01 usin Matlab. e) From the figure 25.68 Chapter 6.5 # 4. y y 20 t y 20 t s Y s 1 Y s 3 , y 0 1, sy 0 20e 20e s s 1 cosh t s y 0 y 0 0 Take the Laplace transformation s Y s 3 Substitute these into the equation and rewrite it 20e 1 s 20 sinh t Take the inverse Laplace Transformation Y s y t 3 u t #9. y y u / t 3 t 3 2 u t , y 0 0, y 0 0 Take the Laplace transformation u / t 3 2 e s / 3e / 3 t u t e s e s e s s s 1 / s Y s e s s e Set 1 Y s 3e s 1 s 3e e / e s e 1 s s 1 3e s 1 1 e 1 s 1 3e s 1 H s 1 s s s 1 u 2 1 cos t Take the inverse Laplace transformation of H s H s Therefore, e e H s h t 1 / h t t 2 h t u t 2 u 1 t cos t 2 u t cos t Finally take the inverse Laplace transformation of Y s Y s e e 2 1 s u t s s 1 1 cos t 3e s y t 3 u 2 1 t 1 cos t 2 u 3 sin t t #14. y a) 1/2 y Take the Laplace transform t 1 s 2 s e 1/4 1 e 1 y 2 y t 1 y y t 1 , y 0 0, y 0 0 s Y s Set H S e s/2 1 Y s e 4 15 s 15/4 e 15/16 1/4 s 1 15/16 s 15/4 15/16 1/4 Take the inverse Laplace transformation of H S H s Therefore, Y s 4 15 H s e e sin 15 t 4 y t 4 15 e sin 15 t 4 1 u t b) y t reaches the maximum when dy dt 1 15 e sin 0 15 t 4 15 t 4 1 e cos 15 t 4 1 e 1 15 sin 1 cos 15 t 4 1 e 1 1 15 cos t 15 4 1 , where atan 1 15 0.2527 In order to get dy/dt = 0 15 t 4 Therefore, t c) 1/4 y Take the Laplace transform t 1 s 4 1 e 1 y 2 y t 1 2.3613 and y t 0.711531 1 2 s 1 Y s e Y s Set s e s/4 1 s e 1/8 63/64 8 37 s 37/8 e 63/64 1/4 H S s 37/8 63/64 1/8 Take the inverse Laplace transformation of H S H s Therefore, Y s 8 37 H s e y t 8 37 e sin 37 t 8 1 u t e sin 37 t 8 For the maximum value of y t dy dt 1 37 e 1 37 sin 37 t 8 37 t 8 1 e cos 37 t 8 1 1 e sin 1 cos 37 t 8 e 1 37 1 cos t 63 8 1 atan 1 317 0.1253 0, where Therefore, 37 t 8 and t d) y Take the Laplace transform t s Y s s e s e 1 s /2 1 /4 s 1 1 Y s e e y y t 2.4569 and y t 1 2 0.833508 1 1 1 /4 s 1 /2 /4 e 1 /4 Therefore, Y s y t 1 1 /4 e sin 1 /4 t 1 u t For the maximum value of y t dy dt e 2 1 /4 2 1 e 1 /4 4 1 /4 sin sin 1 1 /4 t /4 t 1 1 e cos cos 1 1 /4 t 1 1 /4 t e , where cos 1 /4 t 1 0 atan 2 1 /4 For 0, 0 then t 1 2 which gives us t 1 2 2.5708 and y t 1.00000 As decreases t1 and ymax get larger. ...
View Full Document

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern