Exam1-TTh

# Exam1-TTh -

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: NAME: Exam One:Tuesday/Thursday Class September 25, 2009 1. (30 Points) RECTILINEAR MOTION SCORE: AME 301: Fall 2009 D. C. Wilcox The acceleration of sliding block A is a = -v/ , where is a constant time scale. When the block begins its motion at time t = 0, its position and velocity are given by x = and v = vo . As t , we observe that x 3 . Determine vo . 2 . ..... ..... ... ....... . ... ..... ... ..... .... ... ...... ... ... .... ............ ... .... ............ . .. ... ... ... ... ... .. .. ... ... ... ... ... ... ..... ... ..... ... ... . ... ... . ... ... ... ... ... .. ... .. ... ... ... ... ... ..... ... ..... . ... ... ... ... ... ... ... ... ... .... ... ... . ... ... ... ... ... ... ... .... . ... ... ... ... ... .. ... .... . ... .......................... ... ................. ........ ... .. ... ......................................... . . . . ... ... ...... ... ..... ... ...................................... . . . ... ....................................... . ... ..... . . . . . ... .. ... ..... ... ................................. .................. .. . . . . . ................... .... ....... .............................. ......... ... . .. ........... ..... .......... ............................. ............... ........ ... . ..... . . . . ....... . .. . ..... ..................... . . ........... ........ ............. ...... . . . . . .. . . ............ ..... ...... ... ............. . ................. ................... ............ ............ . . .. . .............. .. . . . . . . . . ........................... ............................................. . .. . . . . ............................ ............................................. .. . . . . . . . ..... . . . . ........................... .............................................. ........................... ............................................... . . . . . . . . . . . . . ........................... .............................................. ........................... ............................................... . . . . . ............. ... ......................... .................... ................................................................................................................................................................................................................................................................................................................ . .... .... ... . . . . . . . . . . . .. . ............................................ ..................................................................................... . .. . ................................................................................................................................................................................................................................................................... .............................................................................................................. . . ............................................................................................................... ...................................................... . ................................................................................................................................................................................................................................................................................................................ ............................................................................................................................................................................................................................................................... .............................................................................................................................................................................................. . . . . . . ......................... . . ............................ . .. ... . . . . . . . . . . . ... . . . . .. . . . . . . . . . . ... . . ... ..... . .. . ... . ....................... ....... . .. ...................................... ....................................... .. . . .. . . ..................................... ...................................... . . . A x 2. (30 Points) RELATIVE MOTION OF TWO OBJECTS A ball is launched with speed V at an angle to the vertical at time t = 0 from a cart whose velocity is vA = (U - at) i, where U and a are constant. Determine the angle for which the ball will land at the same point from which it is launched. Express your answer as a function of a and gravitational acceleration, g. y y V O x A .. ... ..... . ...... . ..... . ..... ........... . ... ........................................................................ ................... ............................. ................................ . ................. ... ..... ... ........................................................................................................................................................................................................................................................................................................................................................................................................... ............................................................................................................................................................................................................................................................................................................................................................................................................ .. ..... ................................................................... . . . .................... .................................................................... . .................. . ........ ....................................................... . ................. ..... .. . . . . . .. . . . .. . . . . . . .. . .. . .. . .. t r f r x f 1 3. (40 Points) MOTION WITH CYLINDRICAL SYMMETRY A small sphere of mass m has a tangential speed V as it arrives at the top of a frictionless cylindrical surface of radius R. At time t = 0, the sphere continues sliding along the surface. At an angle s where the normal reaction force between the sphere and cylinder, N , is zero, the sphere separates from the surface. (a) State the equations governing the motion up to the separation point in cylindrical coordinates. Let g denote the acceleration of gravity. (b) Multiply the equation for the circumferential motion by and verify that V 2 2g 2 = 2 + (1 - cos ) R R (c) Using the result for 2 from Part (b), solve for N as a function of m, V , g and cos . (d) If the separation angle is s = cos-1 ( 5 ), what is V 2 /(gR)? 6 . . . . . . . . . . . . . . . . ... ... .. . .. .. . . ... .............. . . ... .. ............... . ..... . . . .. . . .. ........ ...... . . ........................ .. .................................... .......... . . ...... ........... ...................... . . ........................................................... . . ......................................................................... .......................................................................... . . .................................................................................. . .. . . . . . . . . ....................................................................................... . . ............ .... . ......................................................................................... .. . . ... . .. .. . ..... ....... . ............................................................................................ .. . ........ . ...... . ... . ... .. ... . .. ... ........................................................................................................ .. . .......................................................................................................... . ... . ...... ...... . ......... ... ........................................................................................................... .. .. . .... ........................................................................................................ ... ................................................................................................ ........................................................................................................... . . . ... .. .. .. . . .......... . ... .. . . ................................................................................................... . . .. . . .. . .................................................................................................................... . . ... . ................................................................................................................... . . ...... . . . .................................................................................................. . . ....................................................................................................................................................................................................................................................................... ... . . . . . . .... . ........................... ........................................................................................................................................................................................................... V v g R v R ............................................................................................................................................................................................................... ............................... . . ............................................................... . . . . ............................................................................................................................................................................................................... ............................................................................................................................................................................................................... v 2 ...
View Full Document

## This note was uploaded on 10/12/2009 for the course AME 301 at USC.

Ask a homework question - tutors are online