PS2-1

# PS2-1 -

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 13.15. CHAPTER 13, PROBLEM 15 25 13.15 Chapter 13, Problem 15 Problem: A ski jumper has an initial velocity v = V i and follows the indicated trajectory, landing on the inclined slope at time τ a distance from the beginning of the slope as shown in the figure. The slope is inclined to the horizontal at an angle θ. You can ignore effects of friction on the ski jumper’s motion. (a) Determine τ and as functions of V , g and θ, where g is gravitational acceleration. (b) What is the maximum vertical distance of the ski jumper from the slope, hmax ? Express your answer as a function of V , g and θ. (c) If θ = 30o and the ski jumper lands at τ = 3 sec, what are V , z . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . .................................................................................. .............................................................................. ...................................................................................... .. ............................................................................................... .......................................................................................... ... ........................................................................................................ ........................................................................................................ .................................................. ........................................................................................................ ........................................................................................................ ............................................ ... ........ ......... ....... ........................................................................................................ ........................................................................................................ ........................................................................................................ ............................................................................... ........................................................................................................ ........................................................................................................ ........................................................................................................ .. ........................................................................................................ ........................................................................................................ ...................................................................................................... ........................................................................................................ ........................................................................................................ ........................................................................................................ ........................................................................................................ ........................................................................................................ .. ........................................................................................................ ........................................................................................................ ........................................................................................................ ... ...................................................................................................... ........................................................................................................ ........................................................................................................ .................................................................................................. ........ ......... ....... ........................................................................................................ ........................................................................................................ . . . ................................................................................ ........................................................................................................ ........................................................................................................ ....................................................................................................... ........................................................................................................ ........................................................................................................ . ........................................................................................................ ........................................................................................................ ........................................................................................................ ....................................................................................................... ........................................................................................................ ........................................................................................................ ........................................................................................................ ........................................................................................................ ........................................................................................................ and hmax ? v=V i x g = −g k θ So ut on: Because we gnore fr c on he mo on of he sk umper s sub ec on y o he cons an grav aona acce era on Deno ng me by t and e ng t = 0 when he sk umper aunches from he op of he s ope he equa ons and n a cond ons govern ng he mo on are d2 x =0 dt2 x(0) = 0 and x(0) = V d2 z = −g z (0) = 0 and z (0) = 0 dt2 (a) In egra ng w ce and mpos ng he n a cond ons he so u on o he equa ons for x and z s x(t) = V t When he sk umper ands a and 1 z (t) = − gt2 2 me τ we know ha x(τ ) = cos θ and z (τ ) = − s n θ τ= cos θ V 2 Therefore we have V τ = cos θ and 1 1 − s n θ = − gτ 2 = − g 2 2 Rearrang ng erms he so u ons for = 2V 2 tan θ g cos θ cos θ V =⇒ and τ n erms of V g and θ are as fo ows and τ= 2V tan θ g 26 CHAPTER 13. PARTICLE KINEMATICS (b) The vertical distance between the ski jumper and the slope surface is h = |z | − x tan θ = 12 gt − V t tan θ 2 To find the maximum value of h, we differentiate with respect to time, viz., dh = V tan θ − gt = 0 dt =⇒ t= V tan θ g The second derivative is d2 h/dt2 = −g < 0 so that this is indeed the time at which h achieves its maximum value. Hence, 2 V tan θ 1 V tan θ V 2 tan2 θ −V hmax = g tan θ = 2 g g 2g (c) Nothing in the problem statement specifies the units that should be use, so that we can use either USCS or SI. So, for the given value θ = 30o , we have the following. USCS Units: 32.174 ft/sec2 (3 sec) gτ ft V= = 83.6 = o 2 tan θ 2 tan 30 sec = 2(83.6 ft/sec)2 tan 30o 2V 2 tan θ = 289.6 ft = g cos θ 32.174 ft/sec2 cos 30o V 2 tan2 θ (83.6 ft/sec)2 tan2 30o = 36.2 ft = 2g 2 32.174 ft/sec2 hmax = SI Units: 9.807 m/sec (3 sec) m gτ = 25.5 = V= o 2 tan θ 2 tan 30 sec = 2(25.5 m/sec)2 tan 30o 2V 2 tan θ = 88.4 m = 2 g cos θ 9.807 m/sec cos 30o V 2 tan2 θ (25.5 m/sec)2 tan2 30o = = 11.0 m 2 2g 2 9.807 m/sec 2 hmax = ...
View Full Document

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern