{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

mont4e_sm_ch08_sec04

# mont4e_sm_ch08_sec04 - Section 8-4 8-38 02.05,10 = 18.31...

This preview shows pages 1–3. Sign up to view the full content.

Section 8-4 8-38 31 . 18 2 10 , 05 . 0 = χ 49 . 27 2 15 , 025 . 0 = χ 22 . 26 2 12 , 01 . 0 = χ 93 . 46 2 25 , 005 . 0 = χ 85 . 10 2 20 , 95 . 0 = χ 01 . 7 2 18 , 99 . 0 = χ 14 . 5 2 16 , 995 . 0 = χ 8-39 99% lower confidence bound for σ 2 For α = 0.01 and n = 15, 29.14 = 2 1 , n α χ = 2 14 , 01 . 0 χ 2 2 2 00003075 . 0 14 . 29 ) 008 . 0 ( 14 σ σ 8-40 95% two sided confidence interval for σ 8 . 4 10 = = s n 02 . 19 2 9 , 025 . 0 2 1 , 2 / = = χ χ α n and 70 . 2 2 9 , 975 . 0 2 1 , 2 / 1 = = χ χ α n 76 . 8 30 . 3 80 . 76 90 . 10 70 . 2 ) 8 . 4 ( 9 02 . 19 ) 8 . 4 ( 9 2 2 2 2 < < σ σ σ 8-41 95% confidence interval for σ : given n = 51, s = 0.37 First find the confidence interval for σ 2 : For α = 0.05 and n = 51, 71.42 and 32.36 χ α / , 2 1 2 n = χ 0 025 50 2 . , = χ α 1 2 1 2 = / ,n χ 0 975 50 2 . , = 36 . 32 ) 37 . 0 ( 50 42 . 71 ) 37 . 0 ( 50 2 2 2 σ 0.096 σ 2 0.2115 Taking the square root of the endpoints of this interval we obtain, 0.31 < σ < 0.46 8-42 95% confidence interval for σ 09 . 0 17 = = s n 85 . 28 2 16 , 025 . 0 2 1 , 2 / = = χ χ α n and 91 . 6 2 16 , 975 . 0 2 1 , 2 / 1 = = χ χ α n 137 . 0 067 . 0 0188 . 0 0045 . 0 91 . 6 ) 09 . 0 ( 16 85 . 28 ) 09 . 0 ( 16 2 2 2 2 < < σ σ σ 8-14

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
8-43 The data appear to be normally distributed based on examination of the normal probability plot below. Therefore, there is evidence to support that the mean temperature is normally distributed.
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}