# chapter5 - i book 2005/4/7 22:31 page S-31 #52 i i i...

This preview shows pages 1–3. Sign up to view the full content.

± ± “book” — 2005/4/7 — 22:31 — page S-31 — #52 ± ± ± ± Answers to Selected Exercises for Chapter 5 Section 5.1 (page 349) 1. (a) L 2 , 0 ( x )= ( x 1)( x 2) ( 1 1)( 1 2) ,L 2 , 1 ( x ( x +1)( x 2) (1+1)(1 2) L 3 , 1 ( x ( x +1)( x 1) (2+1)(2 1) 3. (a) L 6 , 0 ( x ( x 1 . 6)( x 3 . 8)( x 4 . 5)( x 6 . 3)( x 9 . 2)( x 10 . 0) ( 1 . 6)( 3 . 8)( 4 . 5)( 6 . 3)( 9 . 2)( 10 . 0) L 6 , 2 ( x x ( x 1 . 6)( x 4 . 5)( x 6 . 3)( x 9 . 2)( x 10 . 0) 3 . 8(3 . 8 1 . 6)(3 . 8 4 . 5)(3 . 8 6 . 3)(3 . 8 9 . 2)(3 . 8 10 . 0) L 6 , 5 ( x x ( x 1 . 6)( x 3 . 8)( x 4 . 5)( x 6 . 3)( x 10 . 0) 9 . 2(9 . 2 1 . 6)(9 . 2 3 . 8)(9 . 2 4 . 5)(9 . 2 6 . 3)(9 . 2 10 . 0) 5. (a) P ( x ( x π 4 )( x π 2 ) π 2 8 · 0+ x ( x π 2 ) π 2 16 · 2 2 + x ( x π 4 ) π 2 8 · 1 (c) sin( π/ 3) P ( 3) = 0 . 850762; sin( 6) P ( 6) = 0 . 517428 (d) theoretical error bound: 3( 12) 3 0 . 031079; actual error: 0.015264 7. Since there are four data points, the theorem guarantees a unique interpolat- ing polynomial of degree at most three; however, g is polynomial of degree four. 11. (a) 2 3 / 9 (b) 1/4 (c) answer will vary; may be greater than or less than value from part (a), but will be greater than value from part (b) 13. The polynomial appears to match the underlying character of the data for 1 . 5 x 5 . 45. 15. φ 5 1 01 52 02 53 03 54 0 c p 0.9963 0.9864 0.9713 0.9523 0.9306 0.9072 0.8829 0.8582 φ 45 50 55 60 65 70 75 80 c p 0.8339 0.8101 0.7871 0.7652 0.7443 0.7244 0.7055 0.6872 φ 85 90 95 100 c p 0.6695 0.6521 0.6347 0.6170 17. Using the interpolating polynomial, the viscosity of sulfuric acid with a 5% concentration is 0 . 0037 and with a 10% concentration is 0.1289. S-31

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
± ± “book” — 2005/4/7 — 22:31 — page S-32 — #53 ± ± ± ± S-32 Answers to Selected Exercises for Chapter 5 Section 5.2 (page 361) 1. (a) P 0 , 1 , 2 , 3 ( x )= ( x x 0 ) P 1 , 2 , 3 ( x ) ( x x 3 ) P 0 , 1 , 2 ( x ) x 3 x 0 (b) P 0 , 1 , 2 , 3 ( x ( x x 2 ) P 0 , 1 , 3 ( x ) ( x x 1 ) P 0 , 2 , 3 ( x ) x 1 x 2 (c) P 0 , 1 , 2 , 3 ( x ( x x 1 ) P 0 , 2 , 3 ( x ) ( x x 0 ) P 1 , 2 , 3 ( x ) x 0 x 1 (d) P 0 , 1 , 2 , 3 ( x ( x x 3 ) P 0 , 1 , 2 ( x ) ( x x 2 ) P 0 , 1 , 3 ( x ) x 2 x 3 3. 2 1 4 4 3.25 5 8 2.8 2.995 5. 13 0 11 1 3 0 0.75 21 9 2.25 1 7. x 2 + x +2 9. P 1 (1 . 3) = 4 ,P 2 (1 . 3) = 6 1 , 2 (1 . 3) = 4 . 6 11. 0.382534 13. 1.723371 15. At 20 C, surface tension 486 . 50; at 60 C, surface tension 478 . 31.
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 10/13/2009 for the course MATH 471 taught by Professor Anna during the Spring '09 term at University of Michigan-Dearborn.

### Page1 / 7

chapter5 - i book 2005/4/7 22:31 page S-31 #52 i i i...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online