02 - CHAPTER 2 STRAIN Displacement _ f; time=0 5‘...

Info iconThis preview shows pages 1–18. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 12
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 14
Background image of page 15

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 16
Background image of page 17

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 18
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: CHAPTER 2 STRAIN Displacement _ f; time=0 5‘ reference configuratlon The reference configuration is the configuration at time 0. The current configuration is the configuration at time t. X : material coordinate. » ’\ -—v r ~ I') \l xzspatial coordinate. 7g w> *iumt‘i‘m‘f‘ a7 .4; yr} u: displacement. u=x—X=x(X,t)-—X h I I l "' Ti? Err: rim/{MAL 7 L, 2-1 (1) General Deformation ~/ A/ W159“) Carr" mo n N = dX/|dx| (2) # n = dx/|dx[ (3) dx=F-dX (4) F: deformation gradient tensor. dxi = Fijde (5) F._ = axi(X’t) :9 J3"; & {kw/Xi) 0} V' . —— I ’« ax: (6) ax}. NJ Define / / dso =lXm . I (7) dS =[dx[ (8) x1 = dS / dS0 = stretch ratio 1 . - . , , , , ,r r .L to, / \. < ., k .V ~- n fit/9Q f‘3”5{:'-'V’J2"”" fif/‘Q ’C' ' '9 > I" 3 ’ r' 3‘ r '1“ch -' F“ A ,, I : ., '. t. v v - . '. ' ' /. , r /{ O A alum/r. , V. #4., _ a j .H‘ , :) I, V/ .— Infinitesimal gSmalh Strain Tensor Elementar Definition of Strains 2-D _ I ______ —-' A112 l I ~ X2 5 AXZ l L—J L_ X1 A)(l A111 Aul - / ; . -" 8 =-—- A .» ~, (9) 11 AXI : w ;_, i A » V v' ” 3 , ‘ Au2 ‘ ' 522 = (10) AX 2 12 1 2 AXI AXZ a» \V ‘ \il-‘w 1 812 = 5712 (12) As AX 1 , AX 2 —> 0 a ’ ~’ ” H - J7» 17/- ~ :/)— if"? “#537; 611 = 5%- T“ T>KLY‘I‘{'!-7J2 ‘ " VIVJ’". ’-€ 7 "‘f (/il-J/ ~ - I 1 A yk raw-afw far” Fret/v15, auz 8 = (14) 22 3X2 V 1 au2 aul 1 5 = _ — + = _ 15 12 2 6X2 2 9/12 ( ) 812 : mathematipglfigfigifltfin of thgvs‘he‘ar strain 712 {engiflfiring‘dgfinition of thashgargtrain t): T- !— L ’ ’ 5 3? r ’1 7 ’ 2-3 o 9' X NZ; {5* firm 0,9 .T0g(w exfmmflan. ( aux AZ /p€ISPlflLC€W1/\t MA‘CMb AMA}: ) ’ WA“! .9le 3% ’ . . . <1 a 5 1'14: lgf’jfrr/ . —_ H 4-. V7 ' InfimteSImal Straln Tensor 3-D F I I A > C a 7’6 "327’ '5 ,1“:- ‘ 77*0‘1" X3 u” = u.Pe. ‘ (16) ug =uerJ. (17) ( >$wd§ 5.2:,macla ‘/ s“: <’ (“m aui ~ But. \J ' ‘ ‘ " " ' ’ u. . c c: ' ' (18) "’ —3x: = F77/v “if :41, j »: displayergent gradieptfa u? —uip =ufj(xjg —xf) ' - (19) J J Au;7=u?—uf,Ax.=x?—x’.’ (20) Aui : rélative displacements Aui = um.ij (21) 1 1 = (uhj + it”) + -2— (ui‘j — MN _ M WA 7 ‘vf/ » , / if“! = (517+ cub.)ij (23) y Cf)?" 7‘3 07‘ 1:) 5‘ 5) L i",/ {Jyf ¢ / 2—4 8i]. : infinitesimal strain tensor. my. : rotational tensor. 1 8i]. =—2-(ui,j +14”) 1 2-2-(ujj =8-. ‘9 Jl PM» jumpy/fife”. 81.}. are symmetric. #81 1 812 813 [8]: 821 £22 £23 831 855" €33 is has 6 components. a)” -E(ulj —-uj,i) 1 =_—i(u“_ui,j) —_ r? _ £0}, 7:, :68, 0 £012 [(0] = _ [012 0 . " (013 _ 5023 ‘ to has 3 components. h \ 2-5 (24) (25) (26) (27) (28) (29) (30) (31) 22; JTsFlMemw-t growmQI/x‘t 3X: 'tV‘amsla-‘tTOrx 0-9 r}wa Loo/Law rcmoves 13")“ hot FOfa-tToh, rm 0 {To n W“ Move staf‘kn I ,\ Rotational Tensor Define g = iei = £191 + 5262 + §3e3 where (012 = ‘8}!2353 e i 7f ' (Mr/.3,” 17' . Therefore, (0.. = —8.. 1,” 4kg" Au; : my A23 Aui = (6,). my.)ij 'r‘T-C‘: 1’»? r }/C V_ _, (Ant. =60”.ij =—8ijk§kij ' = gikjgkij M" m fl m 4 6}— Au’ =Aui’ei / = gikjgkijei : gkjigkijei = f x Ax "Y A Y : I? on «V; A; /‘._,, N 1 — :1: A 3 A2”; .3) 2-6 .7“, U ‘ #9! (32) r (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) _ (43) (44) (45) (52> 6”“ W6'W”T“8 F m“ 9—wme 021/- ii)— 5/14 » dk/XDQEQ, i; I I 7C; : A\ ‘8 T/ J 9y 02b 2*) 01% /L—\7Q [2/]: [OZJEEJCOQTJ “(3 I 752 fix” Feasa findfx3< Izzjfosa *SM& (03$; 7 0 45w Strain Transformation 13-D! 311 512 513 [3] = 521 822 623 (46) 831 532 533 [a]: aZ'l a'2’2 a'2’3 (47) I 5i; = ai’kaj’lgkl y (48) 01' [8’] = [a][a][a]’ <49) Strain Transformation 12-DL [£]=[811 812:] (50) 821 822 ' [ ]_ cos6 sin6 (51 a _ —sin6 00819 ’ ) 2—7 So 01‘ = [—2 ii ll |——‘I [ 811 821 8116 + Ens — 811s + 6126‘ 812 C 822 S .65] 812C + 8223 C ‘S —812s+822c s c 81ch + (522s2 +2£lzsc 2 2 —(£11—822)SC+812(C —s ) 81'1 = 8“ cos2 6 + £22 sin2 6 + 2612 sin 6cos 6 51,2 = ‘(8n - 822 ) sin 6 cos 6 + 8,2 (cos2 — sin2 6) 6:2 = 611 sin2 6 + £22 cos2 6— 2512 sin 60056 a. 8 +8 8 _8 11 22 + g c0529+glzsln26 2 2 I./~/r q A Vi; M0170” ad" mgr; age. ‘ nah ,- a 8 . WW __ 11 22 Sln2€+ 812 (:0326 ———( 811—822 2 jcos 26 — 812 sin 26 2-8 ‘ 2 2 —(£11—822)sc+612(c —s ) SHSZ + 82202 — 2812SC y; (52) (53) (54) (55> _ (56) (57) (58) (59) (60) (61> ’ (62) (63) Mohr’s Circle / 1.. L9! ~ ’xv. ". / (2/ ,x {/77 Ex ‘ "if: ; / " « V, Tim" L \ ‘Cw’ w . * U / 63k \ I JP, f m 3, {WW writ: MW '" fl . <i"\ a 1 Ir, "L E» 4 <3??? 3‘ . H ,. ( . _. 1 8' —€ 2 E R: (———“ 22] +8122 (64) The directions denoted by 1 and 2 are the principal directions where only the normal strains exist. 2 1 811 " 522 2 EmaXJnin '—_'2‘(£11""5‘22)i 2 +512 28 tan 249p = —12— 511 _ 822 Example 2-1 Three strain gages a, b and c in the three directions as shown 7 ‘I {j Gage a = ill/in = 8a = 611 A V infigwwwfi ‘E:MWM02' ,x‘ Gage b = 0.0025 in/in = 8b = 81,1 W a ‘ ,9. ‘ Emmy” . - I I .21" ' flea/2’ Gage c /= 0.0005 1n/ 1n 2 EC = 822’ L -.:. I} - / ,, ‘ 7 “If, r k )- Find 8'12 and the principal strains in-the x-y plane. a +8 8 —8 I” ‘ . 51,1 = ——'H 22 + —“ 22 cos 26 4— 812/‘s1n26 2 2 \J 812 = 0.00101 in/in 2-10 (67) (68) . , . V .. 1 E —8 _ u 22 Emaxmin — “(811+ 822) i— [ 2 2 = 0.00251 or 0 Mohr’s Circle (0.001250) ‘ (0.0025, _) A‘(0.00251,0) 81.1 60°=20 (0.002,-0.00101) . V En ineerin Strain and True SMn 1-D model Tensile bar . . . V L— L0 englneermg stam: e = y’xv' ') 1 1 “ -.' 3 ¥‘(. ‘ v E I.» /v‘ . :._‘-> k_» _ 2 +29122 , L0 is the reference gage length. in .r r/ -«" 2-11 i", 5.; ' ‘ “I ’ ' ' ‘ - dl . true straln: define the d1fferent1al true stram as d8 = 7 Where I IS the current length (69) (70) 37/ 3/1 9-0 r rrr 5 x A 4 Z , dl 8 = d8 = — 71 f l I ( ) = In I = In L — 111 L0 / d}'_,’,£ R4 7'2- 55 r" Ingmar : " .‘ , 3r :fimfii I (72) L I _1 73 8— n[ j ' r ( ) ~ L' dln[_lll;] 4W, A, VIP/,0” ’ro/ _ 0 _1n[L0]|L=LD + dL |L0 tL—Lo) . A}. F (av-{Vijij 1 d2 / V p Y 0 2 + — —-—— L — + . . . 74 2 w I“ ( L°) - ( ) L— 1 L— 2 = Lo___( 210) +... (75) i9 2 1° ; ' 1 2 . 6:6—‘e + 7‘: 3 lax/j: * P7 1 S 7- 9‘ e 9 2 ’ ase—>O,8:—: yan" ‘ a L4 1 > I ’ IJ C A /{“:f: x: |/_ "in \ J #7174 A I'y / k0”? Example 2-2 75v Amie, Ari} 90 m €970 sf’émfn C rubber If L=2L0, 8:? :13?" '/ 2L ' e =/ 1n{——°—] =1n 2 = 0.693 (77) 0 e = 2% = 100% (inappropriate from the small strain approach) ' (78) e isonly a good approximation for strain up to a few percents. 1,. i I ‘ ii I?! N V :_ V. To induce the same magnitude of strain in compression: (3,: o 1&5,ny , 3M ‘ 5: “23/ 2 J 2-12 T / _ g 8 =1n££~J = —1n 2 = —0.693 L0 L = 0.5L0 Example 2-3 L0=50mm, L=60mm, e=?, 8:? e= 60—50 =0.2=20% so a =1n i =ln(éj = 0.182 = 18.2% 10 5 1 (a e —Ee2 = 0.2 —o.02 = 0.18) |e| > Isl in tension. Example 2-4 L0 =50mm, 8=—0.182, L=? 8 = —0.182 = ln(£) = ln(§) 50 6 L = 41.67mm L—L0 L0 = —O.167 = —16.7% e: lel < l8| in compression. 2-13 (79) (80) (81) (82) (83) (84) (85) (86) ...
View Full Document

Page1 / 18

02 - CHAPTER 2 STRAIN Displacement _ f; time=0 5‘...

This preview shows document pages 1 - 18. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online