02 - CHAPTER 2 STRAIN Displacement f time=0 5‘ reference...

Info icon This preview shows pages 1–18. Sign up to view the full content.

View Full Document Right Arrow Icon
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
Image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 4
Image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 6
Image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 8
Image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 10
Image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 12
Image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 14
Image of page 15

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 16
Image of page 17

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 18
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: CHAPTER 2 STRAIN Displacement _ f; time=0 5‘ reference configuratlon The reference configuration is the configuration at time 0. The current configuration is the configuration at time t. X : material coordinate. » ’\ -—v r ~ I') \l xzspatial coordinate. 7g w> *iumt‘i‘m‘f‘ a7 .4; yr} u: displacement. u=x—X=x(X,t)-—X h I I l "' Ti? Err: rim/{MAL 7 L, 2-1 (1) General Deformation ~/ A/ W159“) Carr" mo n N = dX/|dx| (2) # n = dx/|dx[ (3) dx=F-dX (4) F: deformation gradient tensor. dxi = Fijde (5) F._ = axi(X’t) :9 J3"; & {kw/Xi) 0} V' . —— I ’« ax: (6) ax}. NJ Define / / dso =lXm . I (7) dS =[dx[ (8) x1 = dS / dS0 = stretch ratio 1 . - . , , , , ,r r .L to, / \. < ., k .V ~- n fit/9Q f‘3”5{:'-'V’J2"”" fif/‘Q ’C' ' '9 > I" 3 ’ r' 3‘ r '1“ch -' F“ A ,, I : ., '. t. v v - . '. ' ' /. , r /{ O A alum/r. , V. #4., _ a j .H‘ , :) I, V/ .— Infinitesimal gSmalh Strain Tensor Elementar Definition of Strains 2-D _ I ______ —-' A112 l I ~ X2 5 AXZ l L—J L_ X1 A)(l A111 Aul - / ; . -" 8 =-—- A .» ~, (9) 11 AXI : w ;_, i A » V v' ” 3 , ‘ Au2 ‘ ' 522 = (10) AX 2 12 1 2 AXI AXZ a» \V ‘ \il-‘w 1 812 = 5712 (12) As AX 1 , AX 2 —> 0 a ’ ~’ ” H - J7» 17/- ~ :/)— if"? “#537; 611 = 5%- T“ T>KLY‘I‘{'!-7J2 ‘ " VIVJ’". ’-€ 7 "‘f (/il-J/ ~ - I 1 A yk raw-afw far” Fret/v15, auz 8 = (14) 22 3X2 V 1 au2 aul 1 5 = _ — + = _ 15 12 2 6X2 2 9/12 ( ) 812 : mathematipglfigfigifltfin of thgvs‘he‘ar strain 712 {engiflfiring‘dgfinition of thashgargtrain t): T- !— L ’ ’ 5 3? r ’1 7 ’ 2-3 o 9' X NZ; {5* firm 0,9 .T0g(w exfmmflan. ( aux AZ /p€ISPlflLC€W1/\t MA‘CMb AMA}: ) ’ WA“! .9le 3% ’ . . . <1 a 5 1'14: lgf’jfrr/ . —_ H 4-. V7 ' InfimteSImal Straln Tensor 3-D F I I A > C a 7’6 "327’ '5 ,1“:- ‘ 77*0‘1" X3 u” = u.Pe. ‘ (16) ug =uerJ. (17) ( >$wd§ 5.2:,macla ‘/ s“: <’ (“m aui ~ But. \J ' ‘ ‘ " " ' ’ u. . c c: ' ' (18) "’ —3x: = F77/v “if :41, j »: displayergent gradieptfa u? —uip =ufj(xjg —xf) ' - (19) J J Au;7=u?—uf,Ax.=x?—x’.’ (20) Aui : rélative displacements Aui = um.ij (21) 1 1 = (uhj + it”) + -2— (ui‘j — MN _ M WA 7 ‘vf/ » , / if“! = (517+ cub.)ij (23) y Cf)?" 7‘3 07‘ 1:) 5‘ 5) L i",/ {Jyf ¢ / 2—4 8i]. : infinitesimal strain tensor. my. : rotational tensor. 1 8i]. =—2-(ui,j +14”) 1 2-2-(ujj =8-. ‘9 Jl PM» jumpy/fife”. 81.}. are symmetric. #81 1 812 813 [8]: 821 £22 £23 831 855" €33 is has 6 components. a)” -E(ulj —-uj,i) 1 =_—i(u“_ui,j) —_ r? _ £0}, 7:, :68, 0 £012 [(0] = _ [012 0 . " (013 _ 5023 ‘ to has 3 components. h \ 2-5 (24) (25) (26) (27) (28) (29) (30) (31) 22; JTsFlMemw-t growmQI/x‘t 3X: 'tV‘amsla-‘tTOrx 0-9 r}wa Loo/Law rcmoves 13")“ hot FOfa-tToh, rm 0 {To n W“ Move staf‘kn I ,\ Rotational Tensor Define g = iei = £191 + 5262 + §3e3 where (012 = ‘8}!2353 e i 7f ' (Mr/.3,” 17' . Therefore, (0.. = —8.. 1,” 4kg" Au; : my A23 Aui = (6,). my.)ij 'r‘T-C‘: 1’»? r }/C V_ _, (Ant. =60”.ij =—8ijk§kij ' = gikjgkij M" m fl m 4 6}— Au’ =Aui’ei / = gikjgkijei : gkjigkijei = f x Ax "Y A Y : I? on «V; A; /‘._,, N 1 — :1: A 3 A2”; .3) 2-6 .7“, U ‘ #9! (32) r (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) _ (43) (44) (45) (52> 6”“ W6'W”T“8 F m“ 9—wme 021/- ii)— 5/14 » dk/XDQEQ, i; I I 7C; : A\ ‘8 T/ J 9y 02b 2*) 01% /L—\7Q [2/]: [OZJEEJCOQTJ “(3 I 752 fix” Feasa findfx3< Izzjfosa *SM& (03$; 7 0 45w Strain Transformation 13-D! 311 512 513 [3] = 521 822 623 (46) 831 532 533 [a]: aZ'l a'2’2 a'2’3 (47) I 5i; = ai’kaj’lgkl y (48) 01' [8’] = [a][a][a]’ <49) Strain Transformation 12-DL [£]=[811 812:] (50) 821 822 ' [ ]_ cos6 sin6 (51 a _ —sin6 00819 ’ ) 2—7 So 01‘ = [—2 ii ll |——‘I [ 811 821 8116 + Ens — 811s + 6126‘ 812 C 822 S .65] 812C + 8223 C ‘S —812s+822c s c 81ch + (522s2 +2£lzsc 2 2 —(£11—822)SC+812(C —s ) 81'1 = 8“ cos2 6 + £22 sin2 6 + 2612 sin 6cos 6 51,2 = ‘(8n - 822 ) sin 6 cos 6 + 8,2 (cos2 — sin2 6) 6:2 = 611 sin2 6 + £22 cos2 6— 2512 sin 60056 a. 8 +8 8 _8 11 22 + g c0529+glzsln26 2 2 I./~/r q A Vi; M0170” ad" mgr; age. ‘ nah ,- a 8 . WW __ 11 22 Sln2€+ 812 (:0326 ———( 811—822 2 jcos 26 — 812 sin 26 2-8 ‘ 2 2 —(£11—822)sc+612(c —s ) SHSZ + 82202 — 2812SC y; (52) (53) (54) (55> _ (56) (57) (58) (59) (60) (61> ’ (62) (63) Mohr’s Circle / 1.. L9! ~ ’xv. ". / (2/ ,x {/77 Ex ‘ "if: ; / " « V, Tim" L \ ‘Cw’ w . * U / 63k \ I JP, f m 3, {WW writ: MW '" fl . <i"\ a 1 Ir, "L E» 4 <3??? 3‘ . H ,. ( . _. 1 8' —€ 2 E R: (———“ 22] +8122 (64) The directions denoted by 1 and 2 are the principal directions where only the normal strains exist. 2 1 811 " 522 2 EmaXJnin '—_'2‘(£11""5‘22)i 2 +512 28 tan 249p = —12— 511 _ 822 Example 2-1 Three strain gages a, b and c in the three directions as shown 7 ‘I {j Gage a = ill/in = 8a = 611 A V infigwwwfi ‘E:MWM02' ,x‘ Gage b = 0.0025 in/in = 8b = 81,1 W a ‘ ,9. ‘ Emmy” . - I I .21" ' flea/2’ Gage c /= 0.0005 1n/ 1n 2 EC = 822’ L -.:. I} - / ,, ‘ 7 “If, r k )- Find 8'12 and the principal strains in-the x-y plane. a +8 8 —8 I” ‘ . 51,1 = ——'H 22 + —“ 22 cos 26 4— 812/‘s1n26 2 2 \J 812 = 0.00101 in/in 2-10 (67) (68) . , . V .. 1 E —8 _ u 22 Emaxmin — “(811+ 822) i— [ 2 2 = 0.00251 or 0 Mohr’s Circle (0.001250) ‘ (0.0025, _) A‘(0.00251,0) 81.1 60°=20 (0.002,-0.00101) . V En ineerin Strain and True SMn 1-D model Tensile bar . . . V L— L0 englneermg stam: e = y’xv' ') 1 1 “ -.' 3 ¥‘(. ‘ v E I.» /v‘ . :._‘-> k_» _ 2 +29122 , L0 is the reference gage length. in .r r/ -«" 2-11 i", 5.; ' ‘ “I ’ ' ' ‘ - dl . true straln: define the d1fferent1al true stram as d8 = 7 Where I IS the current length (69) (70) 37/ 3/1 9-0 r rrr 5 x A 4 Z , dl 8 = d8 = — 71 f l I ( ) = In I = In L — 111 L0 / d}'_,’,£ R4 7'2- 55 r" Ingmar : " .‘ , 3r :fimfii I (72) L I _1 73 8— n[ j ' r ( ) ~ L' dln[_lll;] 4W, A, VIP/,0” ’ro/ _ 0 _1n[L0]|L=LD + dL |L0 tL—Lo) . A}. F (av-{Vijij 1 d2 / V p Y 0 2 + — —-—— L — + . . . 74 2 w I“ ( L°) - ( ) L— 1 L— 2 = Lo___( 210) +... (75) i9 2 1° ; ' 1 2 . 6:6—‘e + 7‘: 3 lax/j: * P7 1 S 7- 9‘ e 9 2 ’ ase—>O,8:—: yan" ‘ a L4 1 > I ’ IJ C A /{“:f: x: |/_ "in \ J #7174 A I'y / k0”? Example 2-2 75v Amie, Ari} 90 m €970 sf’émfn C rubber If L=2L0, 8:? :13?" '/ 2L ' e =/ 1n{——°—] =1n 2 = 0.693 (77) 0 e = 2% = 100% (inappropriate from the small strain approach) ' (78) e isonly a good approximation for strain up to a few percents. 1,. i I ‘ ii I?! N V :_ V. To induce the same magnitude of strain in compression: (3,: o 1&5,ny , 3M ‘ 5: “23/ 2 J 2-12 T / _ g 8 =1n££~J = —1n 2 = —0.693 L0 L = 0.5L0 Example 2-3 L0=50mm, L=60mm, e=?, 8:? e= 60—50 =0.2=20% so a =1n i =ln(éj = 0.182 = 18.2% 10 5 1 (a e —Ee2 = 0.2 —o.02 = 0.18) |e| > Isl in tension. Example 2-4 L0 =50mm, 8=—0.182, L=? 8 = —0.182 = ln(£) = ln(§) 50 6 L = 41.67mm L—L0 L0 = —O.167 = —16.7% e: lel < l8| in compression. 2-13 (79) (80) (81) (82) (83) (84) (85) (86) ...
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern