L02-NP - NPcompleteness Lecture2:Jan11 1 P T h e c la s s o...

This preview shows pages 1–8. Sign up to view the full content.

1 NP-completeness Lecture 2: Jan 11

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2 P The  c las s  o f pro b le m s  that c a n be  s o lve d in po lyno m ia l tim e . e .g . g c d, s ho rte s t pa th, prim e , e tc . The re  are  m a ny pro b le m s  tha t we  do n’t kno w ho w to  s o lve  in po lyno m ial tim e . e .g . fac to ring , po lyno m ial ide ntitie s , g ra ph c o lo uring , e tc .
3 NP-completeness

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
4 NP-completeness
5 NP-completeness

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
6 Polynomial Time Reduction Ho w to  s ho w that a  pro b le m  R is  no t e a s ie r tha n a  pro b le m  Q ? Info rm a lly, if R c a n be  s o lve d e ffic ie ntly, we  c a n s o lve  Q  e ffic ie ntly. Fo rm ally, we  s a y Q  po lyno m ially re duc e s  to  R if: 1. G ive n a n ins ta nc e  q  o f pro b le m  Q 1. The re  is  a  po lyno m ial tim e  trans fo rm a tio n to  an ins tanc e  f(q ) o f R 1. q  is  a “ye s ” ins ta nc e  if and o nly if f(q ) is  a  “ye s ” ins tanc e   The n, if R is  po lyno m ia l tim e  s o lva ble , the n Q  is  po lyno m ia l tim e  s o lva ble . If Q  is  no t po lyno m ial tim e  s o lva b le , the n R is  no t po lyno m ial tim e  s o lvab le .
First Example Clique:   a s ub s e t o f ve rtic e s  S  s o  that fo r e ve ry               two  ve rtic e s  u,v in S  a re  jo ine d by an e dg e . Ins ta nc e :     A g ra ph G =(V,E) a nd a po s itive  inte g e r k. Q ue s tio n:    Is  the re  a  c liq ue  o f s ize  k o r m o re  fo r G ? Independent set:   a  s ubs e t o f ve rtic e s  S  s o  tha t fo r e ve ry                                two  ve rtic e s  u,v in S  a re  jo ine d by an e dg e . Ins ta nc e :     A g raph G =(V,E) and a  po s itive  inte g e r k. Q ue s tio n:    Is  the re  a n inde pe nde nt o f s ize  k o r m o re  fo r G ?

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.
• Spring '09
• xulei
• Trigraph, Computational complexity theory, NP-complete problems, NP-complete, polynomial time, NIAN C Y C LE Ins

{[ snackBarMessage ]}

Page1 / 26

L02-NP - NPcompleteness Lecture2:Jan11 1 P T h e c la s s o...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online