10 - MoreSubst

10 - MoreSubst - Substitution cont'd So far 1 Use basic...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Substitution cont'd So far: 1. Use basic forms 2. Simplify if possible (multiply out or break apart) 3. Use u-substitution 4. Use linear substitution 1+ x dx Ex. 1 + x 2 Ex. x2 dx 1- x Do: Find x x + 1 dx Definite integrals Ex. 4 0 tan 3 d 2 cos x2 dx Ex. 0 1 + x 3 1 Ex. Let B be the upper limit of the definite integral obtained by substitution: 3 0 (2x - 3)h(x - 3x + 7)dx = 2 B A h(u)du Which of the following holds? a. 9 < B b. 6 < B 9 c. 3 < B 6 d. 0 < B 3 e. B 0 Ex. y ( ln y + 1) 1 2 + 9 dy Ex. 2 - 2 cos y dy sin y + 2 Symmetry: Let f be continuous on [-a, a] a. If f is even, ( f (-x) = a 0 f (x)) , then a -a f (x) dx = 2 f (x) dx . b. . If f is odd, Do: 1. ( f (-x) = - f (x)) , then a -a f (x) dx = 0 . 4 0 sin x dx cos x 9 2. 1 (1 + x ) x 0 dx 3. 1 1 2 1 x 1 + 2 1 1 + x 4 2 dx 3 4. 0 1 dx 2 x + 2x + 1 Completing the square Ex. x2 + x + 3 Ex. 3 - x2 + x Ex. 3x 2 + x + 3 Ex. If there is a substitution y(x) that gives 1 -1 2x 2 - 7x + 5 dx = A tan ( y ) , find A. Ex. 2 0 1 -1 T dx = A tan y R 2 5x - 2x + 3 Find T. Do: Ex. If there is a substitution y(x) that gives T 1 -1 -3 2x 2 - 6x + 5 dx = A tan ( y ) R , find A, y and T. 4 ...
View Full Document

This note was uploaded on 10/16/2009 for the course MATH 1206 taught by Professor Llhanks during the Spring '08 term at Virginia Tech.

Ask a homework question - tutors are online