作业_70

0 b5 x belief rules r15 x d15 x d16 v believes j

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: sees { OI , h( PI ) , σ ( SK U , h( OI ) , h( PI ) )} ) B5 x seeing rules R6 x D12 x D13 : V Believes ( J sees OI ) D14 : V Believes ( J sees {σ ( SK U , h( OI ) , h( PI ) )} ) B4 x seeing rules R10 x D8 x D14 x D15 : V Believes ( J Believes (U said { h( OI ) , h( PI )} ) ) 0 B5 x belief rules R15 x D15 x D16 : V Believes ( J Believes (U said { h( OI )} ) ) 0 C2 x J Believes (U said { h( OI )} ) ∧ J sees OI ∧ match(OI , h(OI )) J Believes (U said OI ) 0 B4 x D13 x D16 x V Believes ( J Believes (U said OI ) ) 200628017029197 0 Kailar “m¨ ” A CanProve x to B 6à nf V Believes (V CanProve (U said OI ) to J ) 0 3Œ.ª 8¹ Qc Kripke 8˜ W. ª ¹ QR8 Œ L. e d q a c p, q p, q b * ª ¹Q Œ 8 0 p W= { a , b , c , d , e } R0 R( a , b ), R( a , e ), R( b , c ), R( b , e ), R( e , e ), R( d , d ) L0 0 X a b c d e L( X ) { p, q} { p} { p, q} {q} {φ} 0 4acª (¹ U. EG ( p ) 200628017029197 p s0 cª ¹ S ³ ¸ 6.2.3 0 p s1 Kripke 0 p s2 s3 EG ( c ª Þ )¹ 8R p i = 1 x y 1 ( true ) = p ∧ EX ( true ) = p 0 p x S1 = { s 0 , s1 , s 2 } i = 2 x y 2 ( true ) = 0 i = 1 x y 1 ( true ) = p ∧ EX ( true ) = p 0 p x S1 = { s 0 , s1 , s 2 } i = 2 x y 2 ( true ) = y ( y ( true ) ) = y ( p ) = p ∧ EX ( p ) 0 EX ( p ) x { s0 , ¹ sS1 }³ (ª S 2 = { s0 , s1 , s 2 } ∧ { s 0 , s1 } = { s 0 , s1 } i = 3 x y 3 ( true ) = y y 2 ( true ) = p ∧ EX ( p ∧ EX ( p ) ) 0 EX ( p ∧ EX ( p ) ) x ( ) { s0 } x S 3 = { s 0 , s1 , s 2 } ∧ { s 0 } = { s 0 } i = 4 x y 4 ( true ) = y y 3 ( true ) = p ∧ EX ( p ∧ EX ( p ∧ EX ( p ) ) ) 0 ( ) EX ( p ∧ EX ( p ∧ EX ( p ) ) ) S3 = S4 { s0R }Þ 8ª ¹ S 4 = { s0 , s1 , s 2 } ∧ { s 0 } = { s 0 } EG¹ ( R pÞ )c 8ª Kripke¹ 0Þ f cª R S 3 = { s0 }...
View Full Document

Ask a homework question - tutors are online