# lianx1f - ©¤¨¤§¤¦¤¥¤£  ¡¤¢ 1 0,1...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ©¤¨¤§¤¦¤¥¤£  ¡¤¢ 1 0,1. T¤¤R E¤¤P GH7¤¤¤ F S 6 QI '!" B"BD3CB!BB EBBBB!BB @¦" A¤¤¦ 9 @ 7))4))0()'&\$%#"! 8 65 321 ¡ 2 ∨ p, q, r; ‘ ’. p1 , p2, ..., pn, ... ¡ 2 (c) Either Sam will come to the party and Max will not, or Sam will not come to the party and Max will enjoy himself. ¡ 2 (c) Either Sam will come to the party and Max will not, or Sam will not come to the party and Max will enjoy himself. U p : Sam will come to the party. q : Max will come to the party. r : Max will enjoy himself. V (p ∧ ¬q ) ∨ (¬p ∧ r ). h g r A¤` ¤q 9 8¤E¤¤¦¤¤& @ pi7 ¤¤¤6 %W `X  fe 6 7 ¥e A d¤c¤b¤a¤`¤X ¡YW Bv → C v 3 ↔ A |= C ; B |= |C, B.” “B |= C A → C. C |=  ¤Pt   ¤Pt t ¤h t @¤¦ ¤T APtHs¤¤¤¤    A¨§ xwT ¨¤§¤¤u¤P ©y v ¡tHs if and only if ( ), (⇒). ( 4 ( ), (⇐). iﬀ) ” ”. H%# ¤9 ¢¤¤' t 0 A ¤9 P3H¦¤¤¢ ¥ ¡ 7 T 10 11 Show the logical equivalence of the following pairs. T B T ∧B 0 1 ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online