{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

lianx3A - ‚ © ‚ qS sr A AAAAt ©AC ¨ T P I x w v Y...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ‚ © ‚ qS sr A AAAAt ©AC ¨ T P I x w v Y A€dyAAAAAAu©Ht ©`$ #©W H © V ©" @! sr q ¨T ©©© ©©C Y ©S©©19P4I G ©F )gWV ©©©© ( 9a c i )©©©© a gWV 0 ' ©& p G ©F ) gWV ' ©& h 5 A)f ©e ©©© a AAC Y 0X  ca dbH ` G©F A8 E©D  UC YU8 X ( UUUUUUUVUUUTU1RQI @! $#W CB S P A =1 v H$ 0) $# ©©©#©" 1©©©©" G AF [email protected]! CB AAAAAAAA" ( A& ' %$ 0) $# ©©©#©" 1©©©©" G AF [email protected]! CB AAAAAAAA" ( A& ' %@!  ©©©©©©93 6 " 41)©©$©©" 1©©$©©" ©©©&7'8 ©5 32 # 0) # %©©$©©" # 0) # 1©©$©©" ( ©& ' %$ ©©©#©" 0) # 1©©$©©" ( ©& ' % # !  ©©$©©" ©©©©   ¨ ©©©©©©©©©§ ¦¤ ¥¥£ ¡¢ Σ1 (6) Σ2 (5) (4) (3) (2) (1) Σ1 Σ1 Σ1 Σ1 Σ Σ Σ2 Σ2 Σ2 Σ2 ∅ Σ2 Σ1 3 −Σ Σ1 ∩ Σ 2 Σ1 ∪ Σ 2 Σ1 ⊆ Σ 2 , Σ1 ⊆ Σ 2 , −Σ A 2. 3. (1) T (2) F (3) T (4) F (5) T (6) F 1. A ∈ Σ1 Σ1 A ∈ Σ2 \ Σ1 , A ∈ Σ1 \ Σ2 , Σ1 = Σ 2 , (¬A) = 1. Σ2 v ¬A ∈ Σ2 . A ∈ Σ1 A ∈ Σ1 . A ∈ Σ2 . ¬A ∈ Σ1 1 v, ¬A ∈ Σ2 . A ∈ Σ1 \ Σ2 Σ1 Σ2 Σ1 v, ¬¬A ∈ Σ2 . {A : (A)v = 1} Σ2 , ¬A ∈ Σ1 . ¬A ∈ Σ2 . A ∈ Σ2 \ Σ1 . A, 2 Ho im ©©n©©©©" ( ©©ˆ )‰ 0 ©& ' 0 ©& ©©’ ©©©t ' ”“ ‘qS ”©©’ s ©r ©©t194 I ©k©j “ ‘qS P l Hihg r AAAAf sAAC Y AeA8 Xd©)H  Y ˜ ˜ 7 AAr  p — ƒ  ™P H ` Y ©" s©© p —194I 0 •G ©–©©• ‘q tE UUSUUUD sUrUU¨ U!UUUUUWUUC Y UT ©“©’  @ $# V ¨ ” H $# ) ©©©©" ©‰©ˆ ‡©†©i c …©„©  W V ( 9a H7 ©©©©" ) h 5 ‚ U ‚U UUUUU0 qSt A, ¬A ∈ Σ. {A : (A)v = 1} = Σ. 4. Σ = {A : (A)v = 1}. p, p∈Σ (A)v w Σ v (¬A)v w(p) = v (p) = 0. p, v (p) = 1 v v w(p) = v (p). p∈Σ p, Σ, w(p) = v (p) = 1; p ∈ Σ; 1, Σ v w A∈Σ 2 2 2 ƒ ...
View Full Document

{[ snackBarMessage ]}