notes - Pa -Pb =0.1 for deltah=1ft Asin((Pa -Pb...

Download Document
Showing pages : 1 - 8 of 12
This preview has blurred sections. Sign up to view the full version! View Full Document
Background image of page 1
Background image of page 2
Background image of page 3
Background image of page 4
Pa -Pb =0.1 for deltah=1ft Asin((Pa -Pb )/(deltah*(gamma-gammaB))) p atm =gamma* h+p vapor
Background image of page 5
I_xc=PI*R^4/4 y_R=I_xc/(y_c*A)+y_C distance below the shaft to the center of the pressure is y_R-y_C M_C=0=F_R*(y_R-Y_C)
Background image of page 6
Example 2.8 A pressurized tank contains oil (SG = 0.90) and has a square, 0.6-m by 0.6-m plate bolted to its side. When the pressure gage on the top of the tank reads 50kPa, what is the magnitude and location of the resultant force on the attached plate? The outside of the tank is at atmospheric pressure. F_1=(P_s+gamma*h1)*A F_2=1/2*gamma(h2-h1)/A F_R=F_1+F_2 M_0=-F_R*y_0+F_1*.3 Example 2.9 The 6-ft-diameter drainage conduit is half full of water at rest. Determine the magnitude and line of action of the resultant force that the water exerts on a 1-ft length of the curved section BC of the conduit wall. F1=gamma*hc*A Weight=gamma*volume Fh=F1 Fv=Weight FR=sqrt(Fh^2+Fv^2) Fbouyant=gamma*Volume Buoyant force passes through the centroid of the displaced volume. The point through which the buoyant force acts is called the center of buoyancy.
Background image of page 7
Image of page 8
This is the end of the preview. Sign up to access the rest of the document.
Ask a homework question - tutors are online