This preview shows page 1. Sign up to view the full content.
Equations Test 1 – PHYS 3313
s
m
c
/
10
0
.
3
8
×
=
kg
MeV
m
electron
10
11
.
9
c
511
.
0
31
2
−
×
=
=
neutron
proton
m
kg
MeV
m
≈
×
=
=
−
10
67
.
1
c
938
27
2
Coulomb
e
10
6
.
1
19
−
×
=
s
eV
J.s
h
.
10
14
.
4
10
63
.
6
15
34
−
−
×
=
×
=
1
7
10
097
.
1
−
×
=
m
R
:
)
(
function
Work
φ
eV
Platinum
4
.
6
=
eV
Silver
6
.
4
=
eV
Potassium
2
.
2
=
eV
.

E
m
r
a
6
13
10
529
.
0
1
10
1
0
=
×
=
=
−
2
2
9
0
C
.
10
9
4
1
m
N
×
=
πε
2
1
2
2
1
−
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
=
c
v
γ
2
'
(
)
'
'
Lorentz Transform
S' moving relative to S
xx
v
t
y'
y
zz
vx
tt
c
=−
=
=
⎛⎞
⎜⎟
⎝⎠
2
'
'
.
1
c
v
v
v
v
v
addition
Velocity
x
x
x
+
+
=
pm
v
=
22
2
E
mc
KE
mc
pc
v
E
==
+
=
)
(
2
2
2
2
ic
relativist
non
m
p
mv
KE
−
=
=
∫
=
−
=
=
Time
Energy
P
Fdx
qV
W
2
2
2
)
(
)
(
pc
mc
E
particle
+
=
0
=
=
m
if
pc
E
()
2
E
h
photons
h
υ
π
=
=
=
waves
EM
for
c
v
v
=
=
υλ
)
(
0
0
max
ric
photoelect
eV
h
h
h
KE
=
−
=
−
=
0
min
eV
hc
rays
x
=
−
λ
'
(1
cos
);
cc
h
Compton
mc
λλλ
θ
−=
−
=
p
h
=
xp
Et
∆∆ =≥
∆ ∆=≥
πυ
ω
2
2
=
=
∂
∂
=
=
k
k
v
k
v
g
p
2
2
1
0
4
1
r
q
q
F
e
=
2
1
2
1
n
r
r
n
E
E
n
n
=
=
)
(
1
1
1
2
2
photon
emitted
n
n
R
i
f
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
=
ˆ
ˆ
pE
i
ix
t
∂
∂
∂
∂
=
=
2
' E
:
2
Schrodinger s
quation
iU
tm
x
∂Ψ
∂ Ψ
=
−+
∂∂
=
=
Ψ
222
2
:
2
(
)
0
x
Time
independent Schrodinger s
This is the end of the preview. Sign up
to
access the rest of the document.
This note was uploaded on 10/21/2009 for the course PHYS PHYS 3313 taught by Professor Andrewbrandt during the Fall '09 term at UT Arlington.
 Fall '09
 AndrewBrandt
 Physics, Work, Neutron

Click to edit the document details