# 8.5 - Home> My Assignments> Section 8.5(Homework About...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Home > My Assignments > Section 8.5 (Homework) About this Assignment SMALL BRIAN DIXON MA 241, section 009, Fall 2005 Instructor: Drew Pasteur North Carolina State University Due: Thursday, November 17, 2005 11:04 PM EST Description Power Series Current Score: 0 out of 17.5 Question Score 1. [SCalcCC2 8.5.04.] Find the radius of convergence and interval of convergence of the series. (To enter - or , type -INFINITY or INFINITY.) pts 1 -/1 -/0.2 2 5 -/0.2 3 5 -/0.2 4 5 -/0.2 5 5 Notes pts 1 -/1 -/0.2 2 5 -/0.2 3 5 -/0.2 4 5 -/0.2 5 5 Notes pts 1 -/1 -/0.2 2 5 -/0.2 3 5 -/0.2 4 5 -/0.2 5 5 subs -/20 -/20 -/20 -/20 -/20 R = (No Response)[1] I = (No Response)[ ( ](No Response)[-1],(No Response)[1](No Response)[ ] ] 2. [SCalcCC2 8.5.08.] Find the radius of convergence and interval of convergence of the series. (To enter - or , type -INFINITY or INFINITY.) subs -/20 -/20 -/20 -/20 -/20 R = (No Response)[5] I = (No Response)[ [ ](No Response)[-5],(No Response)[5](No Response)[ ) ] 3. [SCalcCC2 8.5.12.] Find the radius of convergence and interval of convergence of the series. (To enter - or , type -INFINITY or INFINITY.) subs -/20 -/20 -/20 -/20 -/20 R = (No Response)[1] I = (No Response)[ ( ](No Response)[4],(No Response)[6](No Response)[ ) ] Notes pts 1 -/1 -/0.2 2 5 -/0.2 3 5 -/0.2 4 5 -/0.2 5 5 Notes subs -/20 -/20 -/20 -/20 -/20 4. [SCalcCC2 8.5.16.] Find the radius of convergence and interval of convergence of the series. (To enter - or , type -INFINITY or INFINITY.) R = (No Response)[0.5] I = (No Response)[ ( ](No Response)[-3.5],(No Response)[-2.5](No Response)[ ] ] 5. [SCalcCC2 8.5.20.] Suppose that the following series converges when x = -4 and diverges when x = 6. pts subs 1 -/1 -/20 2 -/1 -/20 3 -/1 -/20 4 -/1 -/20 5 -/1 -/20 6 -/1 -/20 7 -/1 -/20 8 -/1 -/20 Notes What can be said about the convergence or divergence of the following series? (a) It (No Response)[ converges ] when x = (No Response) [1]. (b) It (No Response)[ diverges ] when x = (No Response)[8]. (c) It (No Response)[ converges ] when x = (No Response)[3]. (d) It (No Response)[ diverges ] when x = (No Response)[-7]. pts -/0.2 1 5 -/0.2 2 5 -/0.2 3 5 -/0.2 4 5 Notes subs -/20 -/20 -/20 -/20 6. [SCalcCC2 8.5.26.] If f(x) is the following where cn + 4 = cn for all n 0, find the interval of convergence of the series. (No Response)[ ( ](No Response)[-1],(No Response)[1](No Response)[ ) ] 7. [SCalcCC2 8.5.28.] Suppose that the radius of convergence of the power series cnxn is R. What is the radius of convergence of the power series cnx2n? (_) (_) (_) (_) (_) (_) none of these (_) (o) (_) (_) (_) (_) Home My Assignments pts subs -/0. 1 -/20 5 Notes ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online