CS2800-Functions-Seqs_v.5

CS2800-Functions-Seqs_v.5 - Discrete Math CS 2800 Prof Bart...

Info iconThis preview shows pages 1–13. Sign up to view the full content.

View Full Document Right Arrow Icon
1 Discrete Math CS 2800 Prof. Bart Selman [email protected] Module Basic Structures: Functions and Sequences
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Functions Suppose we have: How do you describe the yellow function ? What’s a function ? f(x) = -(1/2)x – 1/2 x f(x)
Background image of page 2
Functions More generally: Definition: Given A and B, nonempty sets, a function f from A to B is an assignment of exactly one element of B to each element of A. We write f(a)=b if b is the element of B assigned by function f to the element a of A. If f is a function from A to B, we write f : A B. Note: Functions are also called mappings or transformations. B
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
4 Functions A = {Michael, Toby , John , Chris , Brad } B = { Kathy,  Carla,  Mary} Let f: A   B be defined as f(a) = mother(a). Michael  Toby John  Chris  Brad Kathy Carol Mary A B
Background image of page 4
5 Functions More generally:    f: R R, f(x) = -(1/2)x – 1/2 domain co-domain A - Domain of f B- Co-Domain of f B
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
6 Functions More formally: a function f : A   B is a subset of AxB where  2200  a   A,  5 ! b   B  and <a,b>   f. A B A B a point! a collection of  points! Why not?
Background image of page 6
Functions - image & preimage For any set S A, image(S) = {b : 5 a S, f(a) = b} So, image({Michael, Toby}) = {Kathy} image(A) = B - {Carol} image(S)   image(John) = {Kathy} pre-image(Kathy) = {John, Toby, Michael} range of f   image(A) Michael  Toby John  Chris  Brad Kathy Carol Mary A B
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
8 Functions - injection A function f: A   B is  one-to-one  ( injective, an injection ) if  2200 a,b,c, (f(a) = b   f(c)  = b)   a = c Not one-to-one Every b   B has at  most 1 preimage. Michael  Toby John  Chris  Brad Kathy Carol Mary
Background image of page 8
9 Functions - surjection A function f: A   B is  onto  ( surjective, a surjection ) if  2200  B,  5  A f(a) = b Not onto Every b   B has at  least 1 preimage. Michael  Toby John  Chris  Brad Kathy Carol Mary
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Functions – one-to-one-correspondence or bijection A function f: A   B is  bijective  if it is  one-to-one and onto . Anna  Mark  John Paul  Sarah Carol  Jo Martha Dawn Eve Every b   B has  exactly 1 preimage. An important implication  of this characteristic: The preimage (f -1 ) is a  function! They are  invertible. Anna  Mark  John  Paul  Sarah Carol Jo    Martha  Dawn Eve
Background image of page 10
11 Functions: inverse function Definition: Given f, a one-to-one correspondence from set A to set B, the inverse function of f is the function that assigns to an element b belonging to B the unique element a in A such that f(a)=b. The inverse function is denoted f -1 . f -1 (b)=a, when f(a)=b. B
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
12 Functions - examples Suppose f: R +    R + , f(x) = x 2 . Is f one-to-one? Is f onto?
Background image of page 12
Image of page 13
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 10/25/2009 for the course CS 2800 at Cornell.

Page1 / 56

CS2800-Functions-Seqs_v.5 - Discrete Math CS 2800 Prof Bart...

This preview shows document pages 1 - 13. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online