03+-+Tail+Recursion+and+Intro+to+Testing

# 03+-+Tail+Recursion+and+Intro+to+Testing - Recursion...

This preview shows pages 1–2. Sign up to view the full content.

1 Tail Recursion and Intro to Testin Ve 280 Programming and Introductory Data Structures Tail Recursion and Intro to Testing Recursion Another kind of factorial int fact_helper(int n, int result) // REQUIRES: n >= 0 // EFFECTS: returns result * n! { if (n == 0) { return result; } else { Re-write the recursive version to use the same amount of space as i i d b th return fact_helper(n-1, result * n); } } int factorial(int num) // REQUIRES: n >= 0 // EFFECTS: returns num! { return fact_helper(num, 1); } is required by the iterative version (approximately). Recursion Group Exercise: Another kind of factorial y This function is equivalent to the original factorial. y Try to come up with a proof for int fact_helper(int n, int result) // REQUIRES: n >= 0 // EFFECTS: returns result * n! { if (n == 0) { return result; } else { why. y There are two steps. First, prove the base case, and second, the inductive step. return fact_helper(n-1, result * n); } } int factorial(int num) // REQUIRES: n >= 0 // EFFECTS: returns num! { return fact_helper(num, 1); } Recursion Another kind of factorial y There is an important thing to notice about fact_helper. y For every call to fact_helper: int fact_helper(int n, int result) // REQUIRES: n >= 0 // EFFECTS: returns result * n! { if (n == 0) { return result; } else { n! * result == num! y For the first call, this is easy to see, since: n == num result == 1 return fact_helper(n-1,result*n); } } int factorial(int num) // REQUIRES: n >= 0 // EFFECTS: returns num! { return fact_helper(num, 1); } Recursion Another kind of factorial y For every call to fact_helper: n! * result == num! y For the second call: n == (num - 1) int fact_helper(int n, int result) // REQUIRES: n >= 0 // EFFECTS: returns result * n! { if (n == 0) { return result; } else { result == (1*num) == num Substituting, we get: (num-1)! * num == num! y This is true by inspection. You can continue unwinding if you like. return fact_helper(n-1,result*n); } } int factorial(int num) // REQUIRES: n >= 0 // EFFECTS: returns num! { return fact_helper(num, 1); } Recursion Another kind of factorial y For every call to fact_helper: n! * result == num! Th i i l ld th i i fth l d i

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 4

03+-+Tail+Recursion+and+Intro+to+Testing - Recursion...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online