{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

10_06ans - STAT 410 Examples for Summer 2008 In general if...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
STAT 410 Examples for 06/27/2008 Summer 2008 In general, if X 1 , X 2 , … , X n is a random sample of size n from a continuous distribution with cumulative distribution function F ( x ) and probability density function f ( x ), then F max X i ( x ) = P ( max X i x ) = P ( X 1 x , X 2 x , … , X n x ) = P ( X 1 x ) P ( X 2 x ) P ( X n x ) = ( ) ( ) n x F . f max X i ( x ) = F ' max X i ( x ) = ( ) ( ) ( ) 1 F x f x n n - . 1 – F min X i ( x ) = P ( min X i > x ) = P ( X 1 > x , X 2 > x , … , X n > x ) = P ( X 1 > x ) P ( X 2 > x ) P ( X n > x ) = ( ) ( ) n x F 1 - . F min X i ( x ) = ( ) ( ) n x F 1 1 - - . f min X i ( x ) = F ' min X i ( x ) = ( ) ( ) ( ) 1 F 1 x f x n n - - . Let Y k = k th smallest of X 1 , X 2 , … , X n . F Y k ( x ) = P ( Y k x ) = P ( k th smallest observation x ) = P ( at least k observations are x ) = ( ) ( ) ( ) ( ) ° = - - ± ± ² ³ ´ ´ µ n k i i n i x x i n F 1 F . f Y k ( x ) = F ' Y k ( x ) = ( ) ( ) ( ) ( ) ( ) ( ) ( ) F 1 F 1 1 ! ! ! x f x x k n k n k n k - - - - - .
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
1. Let X 1 , X 2 , X 3 , X 4 be a random sample ( i.i.d. ) of size n = 4 from a probability distribution with the p.d.f.
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}