# 6 - 6-1Semantics of Predicate Logic(cont’d)I Evaluation...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 6-1Semantics of Predicate Logic (cont’d)I: Evaluation of TermsWe will define avalue functionValA:Tm(Σ)×State(A)→AWe also write[[t]]Aσ=dfValA(t, σ)∈Aso that[[t]]A:State(A)→A.The def. of [[t]]Ais bystructural induction ont:•[[x]]Aσ=σ(x)•[[c]]Aσ=cA•[[f(t1, . . . , tn)]]Aσ=fA([[t1]]Aσ, . . . ,[[tn]]Aσ)(n >0)Example. Fort≡suc(suc(0) +suc(x)),[[t]]N1σ=Note. S&A uses the notation ‘valA,σ(t)’ forValA(t, σ).Definition. ForM⊆Var,σ≈σ′(relM)orσ≈Mσ′(σagrees withσ′onM) if and only ifσ↾M=σ′↾Mi.e.,for allx∈M,σ(x) =σ′(x).Lemma.For fixedM,≈Mis an equivalence relation onState(A).JZ CAS701 F096-2Theorem 1 (Coincidence Lemma for terms).σ≈σ′(relFV(t)) =⇒[[t]]Aσ= [[t]]Aσ′.Proof:Structural induction ont.squareCorollary.Iftis closed then[[t]]Aσis independent ofσ.Notation. Hence fortclosed, write [[t]]AσastA,calledvalA(t) on p.5-4.More generally: supposeFV(t)⊆ {x1, . . . , xn}Putt≡t(x1, . . . , xn).Then [[t]]Aσdepends only on the values ofσatx1, . . . , xn.So for anya1, . . . , an∈A, writetA(a1, . . . , an)to mean: [[t]]Aσfor anyσsuch thatσ(xi) =aifori= 1, . . . , n.Theorem 2 (Substitution Lemma for terms).[[r(x/t)]]Aσ= [[r]]Aσ{x/a}wherea= [[t]]Aσ.Proof:Structural induction onr.squareExGive the proof....
View Full Document

{[ snackBarMessage ]}

### Page1 / 8

6 - 6-1Semantics of Predicate Logic(cont’d)I Evaluation...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online