This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: STT 861: Fall 2007 1 Midterm 1 1. Let A 1 ,A 2 , Â·Â·Â· ,A n be events defined on the same sample space. (a) Prove that P ( A 1 âˆ© A 2 ) â‰¥ P ( A 1 ) + P ( A 2 ) âˆ’ 1. (b) Prove that P ( âˆ© n i =1 A i ) â‰¥ âˆ‘ n i =1 P ( A i ) âˆ’ ( n âˆ’ 1). 2. Suppose that events A 1 ,A 2 ,A 3 and A 4 are mutually independent. Show that for any i and j , i negationslash = j , A c i and A c j are independent. ( Hint: show that P ( A c i âˆª A c j ) = P ( A c i ) P ( A c j ) ) 3. Consider a vector X = ( x 1 ,x 2 ,x 3 ) âˆˆ Z 3 , where Z is the set of all integers. (a) How many vectors X are in Z 3 with positive integer components x i , i = 1 , 2 , 3 that sum to seven? (b) How many vectors X are in Z 3 with positive odd integer components x i , i = 1 , 2 , 3 that sum to nine? 4. There are 21 students in the class STT861 section 2. Female students are 12 among 21 students. They decide to choose a representative of the class and a secretary of the representative. (a) What is the probability that they choose students with different gender for their representative and secretary?...
View
Full
Document
This note was uploaded on 10/27/2009 for the course STT 861 taught by Professor Staff during the Fall '08 term at Michigan State University.
 Fall '08
 STAFF

Click to edit the document details