0 pa b 20 pa c 30 pa d 40 pa e 50 pa water at

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1.39 10 3 m3/s (about 22 gal/min) down the slide, to ensure that the customers do not burn their bottoms. A pump is to be installed under the slide, with a 5.00m-long, 4.00-cm-diameter hose supplying swimming pool water for the slide. The pump is 80 percent efficient and will rest fully submerged 1.00 m below the water surface. The roughness inside the hose is about 0.0080 cm. The hose discharges the water at the top of the slide as a free jet open to the atmosphere. The hose outlet is 4.00 m above the water surface. For fully developed turbulent pipe flow, the kinetic energy flux correction factor is about 1.06. Ignore any minor losses here. Assume that 998 kg/m3 and 1.00 10 6 m2/s for this water. Find the brake horsepower (i.e., the actual shaft power in watts) required to drive the pump. C6.1 A pitot-static probe will be used to measure the velocity distribution in a water tunnel at 20°C. The two pressure lines from the probe will be connected to a U-tube manometer which uses a liquid of specific gravity 1.7. The maximum velocity expected in the w...
View Full Document

This note was uploaded on 10/27/2009 for the course MAE 101a taught by Professor Sakar during the Spring '08 term at UCSD.

Ask a homework question - tutors are online