614 uy u 1 ln yu b 0 y h 684 this distribution looks

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ulent friction is predicted most accurately when we use an effective diameter Deff equal to 0.64 times the hydraulic diameter. The effect on f itself is much less, about 10 percent at most. We can compare with Eq. (6.83) for laminar flow, which predicted 64 2 Parallel plates: Deff Dh Dh (6.88) 96 3 This close resemblance (0.64Dh versus 0.667Dh) occurs so often in noncircular duct flow that we take it to be a general rule for computing turbulent friction in ducts: Deff | v v 360 | e-Text Main Menu | Dh 4A reasonable accuracy Textbook Table of Contents | Study Guide 6.6 Flow in Noncircular Ducts Deff(laminar theory) extreme accuracy 361 (6.89) Jones [10] shows that the effective-laminar-diameter idea collapses all data for rectangular ducts of arbitrary height-to-width ratio onto the Moody chart for pipe flow. We recommend this idea for all noncircular ducts. EXAMPLE 6.13 Fluid flows at an average velocity of 6 ft/s between horizontal parallel plates a distance of 2.4 in apart. Find the head loss and pressure drop for each 100 ft of...
View Full Document

This note was uploaded on 10/27/2009 for the course MAE 101a taught by Professor Sakar during the Spring '08 term at UCSD.

Ask a homework question - tutors are online