A complete stability map of diffuser flow patterns

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: where ABL is the wall area blocked, or displaced, by the retarded boundary-layer flow in the inlet (typically Bt varies from 0.03 to 0.12) A flat-walled diffuser would require an additional shape parameter to describe its cross section: 5. Aspect ratio AS b/W1 Even with this formidable list, we have omitted five possible important effects: inlet turbulence, inlet swirl, inlet profile vorticity, superimposed pulsations, and downstream obstruction, all of which occur in practical machinery applications. The three most important parameters are AR, , and B. Typical performance maps for diffusers are shown in Fig. 6.28. For this case of 8 to 9 percent blockage, both the flat-walled and conical types give about the same maximum performance, Cp 0.70, but at different divergence angles (9° flat versus 4.5° conical). Both types fall far short of the Bernoulli estimates of Cp 0.93 (flat) and 0.99 (conical), primarily because of the blockage effect. From the data of Ref. 14 we can determine that, in...
View Full Document

This note was uploaded on 10/27/2009 for the course MAE 101a taught by Professor Sakar during the Spring '08 term at UCSD.

Ask a homework question - tutors are online