Find the angle length exit height and exit pressure

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ft elevation difference? w h3 U-tube manometer m P6.139 1 ft 2 in Mercury P6.137 | v v P6.138 An engineer who took college fluid mechanics on a passfail basis has placed the static pressure hole far upstream of the stagnation probe, as in Fig. P6.138, thus contaminating the pitot measurement ridiculously with pipe friction losses. If the pipe flow is air at 20°C and 1 atm and the manometer fluid is Meriam red oil (SG 0.827), estimate the air centerline velocity for the given manometer reading of 16 cm. Assume a smooth-walled tube. P6.139 Professor Walter Tunnel needs to measure the flow velocity in a water tunnel. Due to budgetary restrictions, he cannot afford a pitot-static probe, but instead inserts a total | e-Text Main Menu | head probe and a static pressure probe, as shown in Fig. P6.139, a distance h1 apart from each other. Both probes are in the main free stream of the water tunnel, unaffected by the thin boundary layers on the sidewalls. The two probes are connected as shown to a U...
View Full Document

This note was uploaded on 10/27/2009 for the course MAE 101a taught by Professor Sakar during the Spring '08 term at UCSD.

Ask a homework question - tutors are online