The correlations discussed in this chapter are

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: tions discussed in this chapter are adequate to solve most such piping problems. 6.1 Reynolds-Number Regimes Now that we have derived and studied the basic flow equations in Chap. 4, you would think that we could just whip off myriad beautiful solutions illustrating the full range of fluid behavior, of course expressing all these educational results in dimensionless form, using our new tool from Chap. 5, dimensional analysis. The fact of the matter is that no general analysis of fluid motion yet exists. There are several dozen known particular solutions, there are some rather specific digitalcomputer solutions, and there are a great many experimental data. There is a lot of theory available if we neglect such important effects as viscosity and compressibility (Chap. 8), but there is no general theory and there may never be. The reason is that a profound and vexing change in fluid behavior occurs at moderate Reynolds numbers. The flow ceases being smooth and steady (laminar) and becomes fluctuating and agitated (turbulent). The changeove...
View Full Document

This note was uploaded on 10/27/2009 for the course MAE 101a taught by Professor Sakar during the Spring '08 term at UCSD.

Ask a homework question - tutors are online