Exam1solns

# Exam1solns - AERSP 313 EXAM 1 6:30 to 7:45 PM 010 Sparks...

This preview shows pages 1–6. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: AERSP 313 EXAM 1 . October 16, 2008 6:30 to 7:45 PM, 010 Sparks Calculators are allowed, but all results must be included on your paper. For multiple part questions: denote where each part of your solutlon begins. 45(91ch hf 1. (30 pts) The trapezoidal rule of integration for a function f(x) between the limits a, and b is given by NJ) Jﬁjiﬂﬂw=hﬁ%ﬂ+fMQ+fmﬂ+umjr] (a) (10 pts) Using the trapezoidal rule, ﬁnd an approximation to the integral 3 d Jifi a: 1 assuming that hsl. (b) (10 pts) Now assume that h:0.5 to ﬁnd a new approximation to the integral. (c) (10 pts) The two error formulas that we discussed in class for numerical integra- i‘Pi — W = 113 (J% — Jr) Use the formula that applies to this case to calculate the numerical error and ﬁnd an improved approximation to J. How does this compare to the exact value of J? tion are: m U MI:- 8 Ml:- ‘: Jigl["% 'rCL1\ ycbb "1 [\fiiu]: Why“ \aliD-i‘ ‘12". C23 ((02%; \n=\ q=\ b1} \$- 5 l0.» Vvas' 5*” o"; "' egg ~— Ym WEISS * m] = MILD? C3 -. i it 5w 3(Mw7 - mom} wen-0mm )1: 5h". *2.le A: 3h ‘P 2"“; F: d . X “ b ’1 \nuu1uoow1 .3 " l: R91 - O‘R‘lev‘l- ‘ in is - ‘IL ‘3 ‘- lo a a \ M . {a 3 “"3" M” — Legato 2. (25 pts) Find the argument ahd the absolute value or magnitude of f(2) = cosh (2 + where {3.2 4 _L J? ¥=IILQ~€3 \ﬁLez—e. 317 ‘9 ' 1" J. 4 - ' L1“ Mﬂmqvﬂ * Jékeq+€“‘—/T’.\ u. “1% Lit-q * 26‘“ “W ~« : }iEq iv 64%“?- :. ﬁLe-L-KPEH \HYO C.OL\&J\qh3f~ \CL:‘»\ = Mqu i Grog Ra“ ‘2 tan“ 3. (20 pts) Using the Cauchy-Reimann relationships, ' “9-” m “may 5 “Us: determine if the function, 1 f (2) = 1 + z is analytic. (Hint: Muitiply the numerator and denominator by (1+2), where Z is the complex conjugate of z.) E: ‘R*‘\{ '22 \$41 ' _ .‘_.. \x—T‘é -- - ' gm - u: Ta- = “1 ZZa-mem VEVéxzi Y :_ l 1 Hxnhdww w). 5”“4 ‘Yxlwz in ~— \" 24L F11 *‘1 - \H \J - ’_______£___1 __ ‘ “’Z“i ‘X "\[ 111‘ . L" M w Uzi wzw‘ \‘3 _ _ Z Ki :— (HﬂL—tﬁﬂi ‘ (Hum: f“) 7. “V W “ F __.._.._.._._....-—-n z z 1 ’1- ‘ 0 ~24 1H. \1 3 (H753 *X *‘t \ sz*uz\_\{137~ ‘ 2. V4 '5 Ejg’ +‘ \ 1 I) . \§Z ‘L _ C 1“ ¥V 3 L\%1t+11*\[1‘3m u“! 1 *inbH-W a” (Ava-1 ~13th \L‘ 1 2.1 LVN“ U *2.‘ wgluilyq’ Katiqu \f w-vw . I ANAL‘HWQ 4. (25 pts) The Taylor series expansion for a function f(\$) around a point :15 may be written as, I 2 a m + M) m m + h) m M) + mm + %f"(x) + Fire) + orders“) Derive a central diﬁerence expression for f"(a:) based on f at the three points of mo— 2h, + 2h. Form your ﬁnal expression in terms of f2,f,_2,fo and h. Your derivation 3:0: z0 bout the order of accuracy of your expression. should support your statement a elm?- Ream = Cug‘ﬁhC'UQ " "11" CHL‘lo\ rbggts (“Hug i906» L ~= s,— zm; * Ms: — 1;»??? is» m was ~~ €3ng “M h . :0 fun. ft¥a+lh\ 3 EMS *YJAQ‘LVQ} + Zhlv‘ho i. q/ngcmbna satin“) 9-; “* Co * Zhﬁ‘b *ZMIC‘; Misha i“; g“ Ci ‘ 2C9 P LAN“, t OLWW ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 6

Exam1solns - AERSP 313 EXAM 1 6:30 to 7:45 PM 010 Sparks...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online