{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

07_08 - STAT 410 Examples for Summer 2009 Normal(Gaussian...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: STAT 410 Examples for 07/08/09 Summer 2009 Normal (Gaussian) Distribution . μ – mean σ – standard deviation 2 , σ μ N ( 29 ( 29 2 2 σ μ 2 2 1 σ π-- = x e x f , - ∞ < x < ∞ . Standard Normal Distribution . mean 0 standard deviation 1 N ( , 1 ) Z ~ N ( , 1 ) X ~ N ( μ , σ 2 ) σ μ X Z- = X = μ + σ Z ___________________________________________________________________________ EXCEL: ( Z – Standard Normal N ( , 1 ) ) = NORMSDIST( z ) gives Φ ( z ) = P( Z ≤ z ) = NORMSINV( p ) gives z such that P( Z ≤ z ) = p = NORMDIST( x , μ , σ , 1 ) gives P( X ≤ x ), where X is N ( μ , σ 2 ) = NORMDIST( x , μ , σ , ) gives f ( x ), p.d.f. of N ( μ , σ 2 ) = NORMSINV( p , μ , σ ) gives x such that P( X ≤ x ) = p , where X is N ( μ , σ 2 ) ___________________________________________________________________________ 1. Let X be normally distributed with mean μ and standard deviation σ ....
View Full Document

{[ snackBarMessage ]}

Page1 / 4

07_08 - STAT 410 Examples for Summer 2009 Normal(Gaussian...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon bookmark
Ask a homework question - tutors are online