HW13 - 3 8' (A1?» a Z «Mam» - 1M 1151 malcmu-i-agcoshz...

Info iconThis preview shows pages 1–14. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 12
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 14
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 3 8' (A1?» a Z «Mam» - 1M 1151 malcmu-i-agcoshz (a1 ~3aficosu+4agm3u R0 = 40 as ==> R9 = mo 39 = cosh cmh“1(100)] a: 3.0095 Therefore (- ) ~ ‘ mi b. AFm2£G8msu+ws3m “aw-«case 3A 3 c‘ rim-z, umgficoaé AF 22.668ooswécos3u22.668cosuw3mu+4c083u w ~0332mau+4cossu = cos (2088) [~0332 +4c€3s2 0039)] 4 z cw (2:60:59) 1668+ 200$ ('33; 9059)] a: 0 . 3x _ 33: m “I _ $2.557: .. cos («1;— cosén - 0 or 2 606% *- COS {$0334} " {$337261 3 w “142.25' 9" = cos-1 (i; . “3%) == 8.19“,;31.81° 31: '1- 6—- ‘3‘3‘ ° . O- O 2 W “I _ z c a“ w cos [£3g(2.55?2)] 5113?”,122‘863 Computer ReSuit Eireaivity: a” m 603‘) {$593263} 7 mar“, 1232.251? . 138 m 6359 dB W x gees" (“I”) z 3:098” (~«i—) a 0.60?8»\ Comguter Program: a; m 72.742,€23 = 2?.21‘? =¢ Normalizaé :12 = 1,3; = 2.668. d m 3V4 r: 0.7% exceeds dam = 0.60?8A 21> Thus an the minor lobes we not, ' k of the same level. ‘ ‘7' Prob1em 6.49 c DIMENSIONLESS OR dB SCALE IN 3D DIRECTIVITY PLOT OPTION (1):DIMENSIONLESS SCALE OPTION (2)1dB SCALE OPTION NUMBER =2 ******************************************************** PROGRAM OUTPUT ******************************************************** INPUT SPECIFICATION NONUNIFORM DOLPH-TSCHEBYSCHEFF ARRAY NUMBER OF ARRAY ELEMENTS = 4 SPACING BETWEEN THE ELEMENTS (IN WAVELENGTHS) = 0.75 SIDE LOBE LEVEL (IN dB) = 40 OUTPUT CHARACTERISTICS OF THE ARRAY DIRECTIVITY = 6.8586 dB DIRECTIVITY = 4.8513 dimensionTess NUMBER OF MAX MA BETWEEN 0 AND 180 DEGREES = 1 HPBW FOR MAXIMUM # :1 22.3575 degrees THMAX = 90 degrees TOTAL EXCITATION COEFFICIENTS FOR THE ARRAY DESIGN 72.7429 27.2571 NORMALIZED TOTAL EXCITATION COEFFICIENTS (RELATIVE TO EDGE) 2.6688 1.0000 NORMALIZED TOTAL EXCITATION COEFFICIENTS (RELATIVE TO CENTER) 1.0000 0.3747 *** NOTE: THE NORMALIZED ARRAY FACTOR (in dB) 15 STORED IN AN OUTPUT FILE CALLED ArrFac.dat Page 1 A: 0-45} Polar plot of Relative Dire8tivity (0< 4) <360 degrees) 0 \ ., , 901' 90 ‘l!%§\\\\:ug ‘/.’\’v 120 we)? ARRAY FACTOR(dB) -10 -20 (A) O 40 -50 -60 ic‘EOFI-QJ HPBW = 22.3575 (degrees) NONUNIFORM DOLPH-TSCHEBYSCHEFF 180 80 6 (degrees) 100 |Prob1em 6.49;;;:] DIMENSIONLESS OR dB SCALE IN 3D DI TIVITY PLOT OPTION (1):DIMENSIONLESS SCALE OPTION (2):dB SCALE OPTION NUMBER =2 ************~k********************~k********************** PROGRAM OUTPUT ******************************************************** INPUT SPECIFICATION NONUNIFORM DOLPH—TSCHEBYSCHEFF ARRAY NUMBER OF ARRAY ELEMENTS = 4 SPACING BETWEEN THE ELEMENTS (IN WAVELENGTHS) = 0.6078 SIDE LOBE LEVEL (IN dB) = 40 OUTPUT CHARACTERISTICS OF THE ARRAY DIRECTIVITY = 6.0517 dB DIRECTIVITY = 4.0287 dimensionTess NUMBER OF MAXIMA BETWEEN 0 AND 180 DEGREES = 1 HPBW FOR MAXIMUM # =1 27.682 degrees THMAX = 90 degrees TOTAL EXCITATION COEFFICIENTS FOR THE ARRAY DESIGN 72.7429 27.2571 NORMALIZED TOTAL EXCITATION COEFFICIENTS (RELATIVE TO EDGE) 2.6688 1.0000 NORMALIZED TOTAL EXCITATION COEFFICIENTS (RELATIVE TO CENTER) 1.0000 0.3747 *** NOTE: THE NORMALIZED ARRAY FACTOR (in dB) IS STORED IN AN OUTPUT FILE CALLED . . . . . . . . . . .. ArrFac.dat Page 1 gun» m m Ov/«vat 0 9 ARRAY FACTOR(dB) -10 -20 0) O -40 -50 -60 d: 0.60:?‘82 HPBW = 27.682 (degrees) NONUNIFORM DOLPH-TSCHEBYSCHEFF 0 20 40 60 80 100 120 140 160 180 9 (degrees) at 6—5?. a, De v”: 0;; a 33 dB 2 10 Eogm Dddimensioniess} 3,3 m Iogm @(dimensionless) Demimnsionzess) : 1633 = 1,995.26 d A N $995.26 x 2N (-) 2: 2N m m ==> N m 15,962.} A r: 15,962. N 2.: 15352 3; ” (15,961»A) 16 16 16A 8 b' L m {N ~ 130! m {15,962 m 1) 2 993256}; L = 997.561“ ‘3' 9}; m 2 [g- - cm“1 (ngmfl = 2 90° - as”) 9,. a: 2m“ ~ 89.9?45“? = Q0508???" .7. 0.05086” (1. “13.46 4—13.35 dB \ (1.391(16M w(15,962)>\ >1 6358. a. 39 <38 m 201%“; R0 (m), cosh"1(31,623) .a...» mgszms + $631313)? - I} ROWE) -.= 101.5 = 31.523, m 4.14? 2 3 f 2 I + 0,636 {31.623 cosh[\/{cosh”z(31,623})3 w 19;} 2 2 31.623 31.623 «.3 1 + 0.636(6226) m 1 + 0.144 = 1.144 2 2 = 3 + 0.636{ magma} m 1 + 0.636{ c (7.525?)} was . 101.5 . ah = 1.144(09599) £16582" 5‘ D 2123 2(3162332 . a = W m WW 1 2 .. 1 M 1 31.623 2 .. 1 1’144W + (R0 VI. 4» d + K ) I (99156 + “1%)A __ 3:31.623)“ _ __ _ 1 + L146 .. 931.98 .. 29.694 :18 Do = 931.983 29.694 (118 _ 27rA 8’ 3:: x “kdx gm 9;} 606% : —Y§sin(18¢)cofi(gea) l 5,, :1 ~de sin 99 singsg a: if:- smas") 531490“) =\—o.1364 rad x “3231" E b. DgzfiwGQQ Dz Dy (fix I fizzzzv 7 c2230} g =2.5:3.98&B D? u we ( A 2(8) 8 2.0 3.91 (13 Do a mos{10°)(2.5) (2) =2 :51; .. 11.89 (18 ‘ a. 9m x cow [008 as w 0.44:3 1.25 1.25 a 4152" 2 03245 rad 3; cos": (4.443;) ... my: (own-3+) : 110.76“ w 6924“ 5230' fi‘om Tabie 6.2 ; 1 * exfizwwmagggdg] azwmagggfiijn =6.724r3ti A 8 a ma”1 (cos 99 - 0.443 ) m L win d9 89:.m90‘“ A "1 ~ (:08 £308 69 + 0.443 ) m ms“; (~0A43i») —— cos-1 (0.4%?) a 1163“ - 6330" == 5259” a 0.918 rad A130 fmm Tabie 6.2 __a g,_ ,1 1.391k>]m {3* a: 1X391x8) egg-«2F?! €03 (“Ndy ——2 90 ms 83 = 526? =2 0,91? rad ’fhez‘efore I 9 “W m H B (:08? 89 £65}? 0032 (be ~£~ 8;? gin? €30} é!)wa one 90 cos{ 10°) 9g=ig° = 340° = 3.932 rad ‘1’ W W “'8 " 152°~G72458£i ; as egg“:an —§- 6% cog? $39 mums — .2" Mg ' :_ ‘ r 1 80326“ 9;; a 9,9th m 53.40(41.52) = 2,2111? magmas? ~ 32"“ ~ 32"“ ~ Do _. “A {degrees}? ._ 23mm ._ 14.63. .. 11,65 :18 and it wees with the more accurate mines above. 830 52.59“ Compute:- Program {)irectivity 2 151785 = 11.9?98 dB W Prob1em 6.73(phi=0) DIMENSIONLESS 0R dB SCALE IN 3D DIRECTIVITY PLOT OPTION (1):DIMENSIONLESS SCALE OPTION (2):dB SCALE OPTION NUMBER =2 ******************************************************** PROGRAM OUTPUT ******************************************************** INPUT SPECIFICATION UNIFORM PLANAR ARRAY NUMBER OF ELEMENTS IN X-DIRECTION = 10 SPACING BETWEEN THE ELEMENTS IN X-DIRECTION (IN WAVELENGTHS) = 0.125 NUMBER OF ELEMENTS IN Y-DIRECTION = 8 SPACING BETWEEN THE ELEMENTS IN Y-DIRECTION (IN WAVELENGTHS) = 0.125 MAXIMUM BEAM DIRECTION - THETA (IN DEGREES) = 10 MAXIMUM BEAM DIRECTION - PHI (IN DEGREES) = 90 THE 2D ANTENNA PATTERN IS EVALUATED AT AN ANGLE PHI (IN DEGREES) = 0 OUTPUT CHARACTERISTICS OF THE ARRAY PROGRESSIVE PHASE SHIFT IN X-DIRECTION = —4.7848e-016 degrees PROGRESSIVE PHASE SHIFT IN Y-DIRECTION = -7.8142 degrees DIRECTIVITY D O Y ON THE FIELDS ABOVE THE XY—PLANE DIRE TIVITY 11.9798 dB DIRECTIVITY = 15.7755 d' sion1ess IRE ITY BASED ON THE FIELDS ABOVE AND BELOW THE XY—PLANE DIRECTIVITY = 8.9695 dB DIRECTIVITY = 7.8877 dimensionTess EVALUATION PLANE: NUMBER OF MAXIMA BETWEEN 0 AND 180 DEGREES = 2 HPBw FOR MAXIMUM #1 41.9284 degrees THMAX = 0 degrees HPBW FOR MAXIMUM #2 39.9284 degrees THMAX = 181 degrees *** NOTE: THE NORMALIZED ARRAY FACTOR (in dB) IS STORED IN AN OUTPUT FILE CALLED . . . . . . . . . . .. ArrFaC.dat Page 1 0 2 1 %’ fi”! m Wm « A, \V v 1 gm 0 m 3 p H O p m ' x m mwm PrObTem 6.73 hi=90)wfl DIMENSIONLESS OR dB SCALE IN 3D ECTIVITY PLOT OPTION (l):DIMENSIONLESS SCALE OPTION (2)1dB SCALE OPTION NUMBER =2 ******************************************************** PROGRAM OUTPUT ******************************************************** INPUT SPECIFICATION UNIFORM PLANAR ARRAY NUMBER OF ELEMENTS IN X-DIRECTION = 10 SPACING BETWEEN THE ELEMENTS IN X-DIRECTION (IN WAVELENGTHS) = 0.125 NUMBER OF ELEMENTS IN Y-DIRECTION = 8 SPACING BETWEEN THE ELEMENTS IN Y-DIRECTION (IN WAVELENGTHS) = 0.125 MAXIMUM BEAM DIRECTION - THETA (IN DEGREES) = 10 MAXIMUM BEAM DIRECTION — PHI (IN DEGREES) = 90 THE 2D ANTENNA PATTERN Is EVALUATED AT AN ANGLE PHI (IN DEGREES) = 90 OUTPUT CHARACTERISTICS OF THE ARRAY PROGRESSIVE PHASE SHIFT IN X—DIRECTION —4.7848e—016 degrees PROGRESSIVE PHASE SHIFT IN Y—DIRECTION _ —7.8142 degrees DIREC IVI SED ONLY ON THE FIELDS ABO E THE XY-PLANE DIRECTIVITY 11. IRECTIVITY 15.7755 dimensionTess r DIRECTIV ASED ABOVE AND BELOW THE XY-PLANE DIRECTIVITY = 8.9695 dB DIRECTIVITY = 7.8877 dimension1ess EVALUATION PLANE: NUMBER OF MAXIMA BETWEEN 0 AND 180 DEGREES = 2 HPBw FOR MAXIMUM #1 77.001 degrees THMAX = 9.1 degrees HPBW FOR MAXIMUM #2 75.001 degrees THMAX = 170.9 degrees *** NOTE: THE NORMALIZED ARRAY FACTOR (in dB) Is STORED IN AN OUTPUT FILE CALLED . . . . . . . . . . .. ArrFac.dat Page 1 ...
View Full Document

This note was uploaded on 11/01/2009 for the course EEE 443 taught by Professor Balanis during the Spring '08 term at ASU.

Page1 / 14

HW13 - 3 8' (A1?» a Z «Mam» - 1M 1151 malcmu-i-agcoshz...

This preview shows document pages 1 - 14. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online