Ch 13 - Solutions

# Ch 13 - Solutions - Chapter 13 Queuing Theory 6 a b c There...

This preview shows pages 1–2. Sign up to view the full content.

Chapter 13 Queuing Theory 6. a. There are 30/60 = 0.5 arrivals per minute, on average. b. In a ten minute interval we would expect 10*0.5 = 5 arrivals to occur. c. P(x=0) = (5 0 e -5 )/(0!) = 0.00674 (NOTE: 0!=1) P(x=1) = (5 1 e -5 )/(1!) = 0.03369 P(x=2) = (5 2 e -5 )/(2!) = 0.08422 P(x=3) = (5 3 e -5 )/(3!) = 0.14037 d. P(x>3)=1-P(x 3) = 1-0.00674-0.03369-0.08422-0.14037 = 0.73497 7. a. Expected service time = 1/40 = 0.025 hours (or 1.5 minutes) b. P(t 1/60) = 1- e -40/60 = 0.4865 c. P(2/60 t 5/60) = e -40*2/60 - e -40*5/60 = 0.2279 P(t < 4/60) = 1- e -40*4/60 = 0.931 P(t 3/60) = 1- P(t 3/60) = 1-.8646 = 0.1354 8. Use the M/M/s template in Q.xls with: Arrival Rate = 30, Service Rate = 40, Number of Servers = 1. a. 0.25 b. 0.75 c. 2.25 d. 0.1 hours or 6 minutes e. 0.075 hours or 4.5 minutes f. 60 per hour 9. Use the M/M/s template in Q.xls with: Arrival Rate = 7 per hour, Service Rate = 3 per hour, and vary the number of servers. With 3 servers the average waiting time is 0.3057 hours or 18.34 minutes.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 2

Ch 13 - Solutions - Chapter 13 Queuing Theory 6 a b c There...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online