Lossles Line

# Lossles Line - Special Cases of the Lossless Line...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Special Cases of the Lossless Line Short-Circuited Line Transmission line terminated in a short Circuit: (a) schematic representation, (b) Normalized voltage on the line, (c) normalized Current, and (d) normalized input impedance V ( z ) = Vo+ ( e − j β z + Γe jβ z ) Vo+ − j β z I ( z) = ( e − Γe j β z ) Zo Γ = -1 ~ Vsc ( z ) = Vo+ ⎡ e − j β z − e j β z ⎤ = 2 jVo+ sin β z ⎣ ⎦ Vo+ − j β z 2Vo+ jβ z ⎡e +e ⎤ = I sc ( z ) = ⎦ Z cos β z Zo ⎣ o ~ ~ sc Z in = Vsc (−l ) ~ I sc ( −l ) = jZ o tan β l Short Circuit If tanβl ≥0, the line appears inductive jω Leq = jZ o tan β l , if tan β l ≥ 0 Leq = Z o tan β l ω (H) If tanβl ≤0, the line appears capacitive 1 = jZ o tan β l if tan β l ≤ 0 jωCeq 1 (F) Ceq = − Z oω tan β l Open Circuit Transmission line terminated in an open circuit: (a) schematic representation, (b) normalized Voltage on the line, (c) normalized current, and (d) Normalized input impedance Γ=1 ~ Vsc ( z ) = Vo+ ⎡ e− j β z + e j β z ⎤ = 2Vo+ cos β z ⎣ ⎦ −2 jVo+ Vo+ − j β z jβ z ⎡e −e ⎤ = I sc ( z ) = sin β z ⎦ Zo ⎣ Zo ~ ~ oc Z in = Voc (−l ) ~ I oc (−l ) = − jZ o cot β l Power Flow on a Lossless Transmission Line Instantaneous Power carried by the incident wave as it arrives at the load ⎡ ~ i jωt ⎤ ⎡ ~i jωt ⎤ P (t ) = v (t ) ⋅ i (t ) = Re ⎢V e ⎥ ⋅ Re ⎢ I e ⎥ ⎣ ⎦ ⎣ ⎦ Assume: + o + o V =V e i jφ + + V ( z ) = Vo+ e jφ e − j β z = Vo+ e jφ I ( z = 0) = i ⎡ Vo+ ⎤ jφ jωt ⎤ jφ + jωt + = Re ⎡ Vo e e ⋅ Re ⎢ ee⎥ ⎣ ⎦ Zo ⎢ ⎥ ⎣ ⎦ + ~ ~ i + o V Zo e + z =0 = Vo+ cos (ωt + φ + ) ⋅ jφ + = +2 o V Zo Vo+ Zo cos (ωt + φ + ) cos 2 (ωt + φ + ) (W) Reflected power carried by the incident wave as it arrives at the load v (t ) = Γ V cos (ωt + φ + θ r ) r i (t ) = − Γ r + o + + o V Zo cos (ωt + φ + θ r ) + P r (t ) = v r (t ) ⋅ i r (t ) = Re ⎡V r e jωt ⎤ ⋅ Re ⎡ I r e jωt ⎤ ⎣ ⎦ ⎣ ⎦ =−Γ 2 Vo+ Zo 2 cos 2 (ωt + φ + + θ r ) (W) Time-Average Power i Pav = = 1 ω i ∫0 P (t )dt = 2π ∫0 T 2π T +2 o ωV 2π Z o ∫ 2π ω 0 ω Vo+ 2 Zo cos 2 (ωt + φ + )dt +2 o cos(2ωt + 2φ ) + 1 ωV dt = 2 2π Z o + 2 + ω Vo ⎧ π 1 ⎫ ⎡sin(4π + 2φ + ) − sin 2φ + ⎤ ⎬ = ⎨− ⎦ 2π Z o ⎩ ω 4ω ⎣ ⎭ i Pav = Vo+ 2 2Z o r Pav = − Γ 2 Vo+ 2 i = − Γ Pav 2 2Z o Net average power delivered to the load i r Pav = Pav + Pav = Vo+ 2 2Zo −Γ 2 Vo+ Zo 2 = Vo+ 2π / ω ⎡ 1 1 sin ( 2ωt + 2φ + ) ⎤ ⎢ t− ⎥ 22 2ω ⎢ ⎥ ⎣ ⎦0 2 ⎡1 − Γ 2 ⎤ (W) ⎦ 2Z o ⎣ ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online