Solutions_to_Fundamentals_of_Spectrophotometr_Problem_Set_1

Solutions_to_Fundamentals_of_Spectrophotometr_Problem_Set_1...

Info iconThis preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Chemistry 41 Fall 2003 Fundamentals of Spectrophotometry Problem Set 1. Define the following terms: frequency, wavenumber, monochromatic light, molar absorptivity and Beer’s law. 2. When does Beer’s law fail and why? 3. Why do we say that light has a dual nature? 4. List the regions of the electromagnetic spectrum in order of decreasing energy. 5. Calculate the absorbance of solutions which have the following percent transmittance (% T) values: (a) 75, (b) 52, (c) 10, (d) 4.1 and (e) 1.0. 6. Convert the following absorbance readings to percent transmittance (% T): (a) 0.005, (b) 0.23, (c) 0.48 (d) 1.00 and (e) 2.0. 7. A solution was found to have a 15.6 % transmittance at its wavelength of maximum absorption using a cell with a path length of 5.00 cm. Calculate the % T and absorbance of the solution in (a) a 10.00 cm and (b) a 1.0 cm cell. 8. A compound has a molar absorptivity W '1 at 7» = 395 nm. Calculate the molarity of a solution of this compound w c «s an absorbance of 0.425 when measuredina1.00cmcell. 3mu\d ha q)303 M'i €3,303 9. A solution contains 4.0 part per million (ppm) iron. The iron is reduced to the ferrous state and is complexed with 1,10-phenanthroline. The absorbance of the solution is measured at 508 nm in a 1.00 cm cell and found to be 0.795. Calculate the molar absorptivity of the ferrous-1,10-phenanthroline complex at this wavelength. 10. Green Slime, an uncharged organic dye, is present in a 600.0 mL sample of water at an unknown concentration. The sample is extracted with 75.00 mL of cyclohexane. After the extraction, the absorbance of the cyclohexane phase, measured at 635 nm in a 1.00 cm cell, is 0.870. The absorbance of a blank (pure cyclohexane) is 0.007. Molar absorptivity (8535) of Green Slime in cyclohexane = 68500 M‘1 cm‘1 Partition coefficient (K) of Green Slime between cyclohexane and water = 32 a) Calculate the concentration of Green Slime in the cyclohexane phase after the extraction step. b) Calculate the concentration of Green Slime in the water sample prior to the extraction step. d) E; a 52:0 g/_ {32. )_ €543“ b277, g}; 77 A,” 01Man R ms}; , . ,- _ _ . _ equsgguaLmewfivVW, _ w 5, Y ,,.,_.;;£:, ,§,9b,3,,, ,, $134M '- Qmflt O « \Q M_..__,-.--ih Siiziflayggw_ — pd: M“c_m“_ ,, M imthc/LJL )1 , _> ,, XS, 91333er1 c; . Pcu’ignlfillflw a- @091 HO. - l‘ 3 I f ':EAf‘:fm,bs.i&im}k¢$YLg}gQ_ a) EFT“? MAM MSur if}. Q-, fiiAwmy"fiwflmfiuiuflflggmh%fihv:w g;'filmmdgglgfigfiigaifilQ£M%Agx} 1 ! f: e931 Q;::: i i: :i'f:"iii: @530.) gs: PS? chm 3x; if . (3331 fi:¥::® ESQ” Mn— ";X " *Béeés m1 siqmuimfiq mm? a q_q erg): erum , 9mm ’ Aha; e x: mpam g: ¥L¢_gc¢\‘gojk.,mfi 73‘}: “349 {c}; L» "A ,__\r\ Cmggaw 5M2 «30 {593431 (ficfiemfie? ‘ “mg:me om 2m;er ,Eabws mfihgfi I Q93 ELL 3; ..-gg§_§£ei:; ‘ up w m *"gx‘smgn mvaA-, NDQVNB W \R R CcnUzLfinAsga ~CLO20LLQQA‘ ‘W_A# I ChmeEl equLbnum -— _ H‘Ln ,- Map ,6? \vn'CJc A30 __ 3) .L; .h_é:fEi;qk nah; beak;ng CR3: duaan kit‘th urn ‘kfirmfi Ojt balih L...) QM wweéLég fifikfsfimflflw , _ L w-u A ;_,-j-,—>;:..:_‘o: dj 5:; =3! IO; 59:] 583?; i W 2 “5‘35"” 2 we 7a p x 01:67; 2%, ji r l‘; ‘\_4) . - Q A abs «balls? ‘3 ,Am)[ in [:3 «3%: am )wfissusfll. ,, ,,5;ci_i:fc_;; , ,V .___ VT :7 f X=RbswbcwwW0~® 'P‘A‘H‘H’SS‘V‘QC "A‘A‘fiii * " i e, OZQT-LiLQ—Abméylc‘xi22‘43 s22, :th, f;i_ff; iii; ___——-—-’ ’Ii (moow‘mwdomig Q a t ,1; 4.57kxd5M 3| H =_ 4.0 ppm b: \- Clan _A_4_.%e%} 0.“) q 5 * i 0.7%: e59?) moomwxoggpga i ) ‘ 656%? WMJ Cmq .5 ‘if‘ Cm “ \gngL a: «was; W goers q’e; pg @, i la) (:3 * (0.5570-0‘m134995q: M‘igingme CGS 'f (cmmmje“11.;égxnxim, * r ,waé-E .. 39 bk .6: Yogi: A,b\qn,\£ 7. A w ,7 “VD ):< r ,, x ( “392% W‘i , S, \3 .eXfichC d, Ark; CYCbMKifle. 7 7 3: $1“.ch \g‘m MM DAL? " they, ,5“; gygfx’ggmgg.‘ ,, \ ; 7 «wwfiwm 06 “\2 4* 9? 8mm S‘O’Xvfi, \fiics r ;b¢e.f\ EDHYLCA’LC} )flk C\[Q\Q\~e\cc(\Q r , 39 4 (0.?ch homaé “mm 1 29x55 M)<75mL\ , , f .1} , , i T§YS\ mm; L, Xaxxg “393:5 ,, _ , ,7 7, 7 ,, 4;, N A 7” V ' 7 V N N 7 ' W in" A V v . “WW 77777777777777", H dd’mm’;fi :ggmigm PM in 9d“ .7" ,:,::,m: N: ml (2g 7; pug ) m We. ,5 éi ,m ",777 W 7 ,7, , , WW fivmimfi, ,fi C_L7,2<,,,1;:MMM ._ , ,, # ...
View Full Document

This note was uploaded on 11/03/2009 for the course CHEM 241 taught by Professor Tiani during the Summer '08 term at UNC.

Page1 / 10

Solutions_to_Fundamentals_of_Spectrophotometr_Problem_Set_1...

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online