equations for math 233

equations for math 233 - T (t ) = r ' (t ) T ' (t ) and , N...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: T (t ) = r ' (t ) T ' (t ) and , N (t ) = and , B(t ) = T (t ) × N (t ) | r ' (t ) | | T ' (t ) | b ArcL = ∫ | r ' (t ) | dt a κ= | T ' (t ) | | r ' (t ) ⋅ r" (t ) | = | r ' (t ) | | r ' (t ) |3 r ' (t ) ⋅ r " (t ) | r ' (t ) | | r ' (t ) × r " (t ) | An = | r ' (t ) | z − z 0 = f x ( x0 , y 0 )( x − y 0 ) + f y ( x0 , y 0 )( y − y 0 ) = tan plane At = f ( x, y ) ≈ f (a, b) + f x (a, b)( x − a) + f y (a, b)( y − b) = linear _ approx f ( x, y ) ≈ f (a, b) + dz = linear _ approx dz = f x (a, b)( x − a) + f y (a, b)( y − b) = total _ dif ru × rv = NormalVectorToTanPlane ∂z ∂z ∂x ∂z ∂y ∂z ∂z ∂x ∂z ∂y = + and = + ∂s ∂x ∂s ∂y ∂s ∂t ∂x ∂t ∂y ∂t u = <a, b >, Duf ( x, y ) = f x ( x, y )a + f y ( x, y )b : dirrectonalderiv. ∇f ( x, y ) = < f x ( x, y ), f y ( x, y ) > Duf ( x, y ) = ∇f ( x, y )u MaxDirec.Deriv. =| ∇f ( x, y ) | Tang .Plane = f x ( x, y, z )( x − xo ) + f y ( x, y, z )( y − y o ) + f z ( x, y, z )( z − z o ) = 0 SecondDerivativesTest...D(a, b) = f xx (a, b) f yy (a, b) − [ f xy (a, b)]2 if .D > 0..and .. f xx > 0..then.. f (a, b)..is..a..local.. min if .D > 0..and .. f xx < 0..then.. f (a, b)..is..a..local.. max if .D < 0..then..it..is..nothing if .D = 0..test..is..inconclusive Center..Of ..Mass.. m = ∫ ∫ ρ ( x, y )dA D x= 1 1 ∫ D∫xρ ( x, y)dA.... y = m ∫ D∫ yρ ( x, y )dA m D D A( s) = ∫ ∫| ru × rv | dA = ∫ D ∫ 1 + f x2 + f y2 ∫ ∫ f∫(r cos(θ ), r sin(θ ), z )r.dz.dr.dθ = cylindrical ∫ ∫ f∫( ρ sin φ cosθ ,ρ sin φ sin θ , ρ cos φ ) ρ D 2 sin φ ..dρ .dθ .dφ Matthew 6:34 [The Amplified Bible] So do not worry or be anxious about tomorrow, for tomorrow will have worries and anxieties of its own. Sufficient for each day is its own trouble. ...
View Full Document

This note was uploaded on 11/03/2009 for the course BIOL 90726 taught by Professor Weakley during the Spring '09 term at UNC.

Ask a homework question - tutors are online