Mikro攌onomik - Vorlesung 7a

Mikro攌onomik - Vorlesung 7a - ! "...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ! " #$$%& $ ' ( ) & "& "& , ! " *+ + " ) & " ) + !" + ) & " ) + ) 9< 9 $) ) $ '' b) Beispiel 2 ) ). 0 " ) ) ") / ) " 3 /" ) (1 . 4 6 ! + " .") " !" # + " ) 5 +/ 7 + ) " 6 # 2) : + 2) " !" 0 2 ( -&5 8 ; " $9 6 a) Beispiel 1 r1 Expansionspfad r1 Expansionspfad 0 $$ $ # *+ . + + ) + r2 (0 ) ) " " $$ $ 0 4 ) 1 *+ ) ) " +: . " & r2 ) / ) 5 *+ $$ $ - ) , + A . ) ( + $9 $$ $ ) 3 ) / " ) ) / & &? ?+ " =) @ # $9 > ? / ,+ =" 8 > " 2. + 0 "6 ?+ $) # . " *+ - , + ) ) *+ + ? ," 4 , & &? 6 "5 *+ ) 0 + , 2 ) # C D (& ) *+ " + 5 B / 3" 6 . ' ( &- &A 2. ? $ . " " 'D'(3& 6 ' E ' ) $ = 3+ " . % " & " 2 >' E F, 2 " ) 1 " ' / @ " $ " " ) 2) ) E ) "/ $$ H $ ) " /" . @ ) ? / -) 6 # 0 , " ) " = /" ) - + "> ") E 4 " - )8 0 G " 1 $+ =3 2 " ) ) /> . 5" "6 / ' )8 ++ E " E ! , " 5 8 " / $ 3D - % ++ ,"! $) ) .") ( , ∆3D & /" ) . " $ % '' 08 " ) :3+ " " ) $) " ( ) / '' ' " = " 0 "6 7 ) , . " " / " ) " /> 1 )8 ( / " + " ) 2. " ) $ 3D%- K J" 7 .= ) F F> $$I &# $ ( , ∆3D & " y=6 y=5 y=2 y=4 y=3 y=1 K K(y) = k(y) + F F y $$ H #:3+ " $ 2 2) /" " ) 6 ) 3+ " ' (B & " F = 3+ " > 2/ 0* " + ) / A # $$ % K $ J / " $9 : + ) ) ) , * 4 " (=: ++ / -" + 2) & 2. ) ∆3D .") /" 8F / 0 " " $$ H $ 6 +) $) ) $9 8 0 ) 6 $9 8 ! 3 '3 . " -+ 8 ' ) -. F 2*) 2 2) / /" ))" 1 +) >7 2) ) / / "L . " M ?+ / 5 " ) O "5 5: 7 7+) " ' " 1 " ) B ) @ 4 " " M - ) " " " " - ) 1 " 4 *+ + ) *+ " L ' + + ) " N , +) /" 2) N E ' " / " ) " ' 7 ) " " ?+ F ) $$ H $ " +/ ) +" " = >5∆3D 5 # $9 : 1 : = 0 >$ ) : & 5 " ) # " ) B O >4 , "/ " E ) 5 )8 - =" 8 >, + 2) 3+# = 3+ " - = += -P " + Q + + N ! # 2/ 4 R 8 "@ "/ " " , 0 ( = &" " >' + HH 0 ( III&" /F 4 KI 1 O 2) 2) K $$% & $ "" ) 7 ) K R Q K(y) P F Q P 0 GK DTK DVK yR yQ yP y GK DTK DVK yR $$ $ 2. ' (& )/ # "" " " $ " . # "" 7 7 yQ ) yP y ) - , 7 ) ' :' (= .")) > = .")) >&# = 7 :' D "( α-0 $$ $ &# 2 ?+ ' ) - H (& "" " ' 4'# = 7 4' D " #2 β- 0 − ' S :' ) -6 4' " " ?+ 2*) 2 (%& ' ) D7 ) 7'# = 7 1 $S $ = "# ) : ) ) ) 6 #G #: #: B & B & " ) '(3& 0 + ' 4' D 7' (' :' D 7' (' # ( 7' ' :' " 4' :' 0 4' ' B & 6 ) , # 4' 0 : 8 B 0 3S ", ( ) " & :' 0 ' ) ) " 8 0 3 (4 ) &+ .")+ + .") 5 6 ", + .")) #, ) 5 G # -) " 7 , +# = = = + −= = + + + + + ++ > < = = = − = + = = + + + = 0 ( 3")< G ) &- KH 5 HI@ 0 -" ( ' ( III&" & K 5 H% " ...
View Full Document

This note was uploaded on 11/04/2009 for the course VWL VWL taught by Professor Ka during the Spring '06 term at Uni Münster.

Ask a homework question - tutors are online