Mikro攌onomik - Vorlesung 10

Mikro攌onomik - Vorlesung 10 - ""...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ! "" # $% & # '( ) ' -. , * / 3 ( ./ # " #+ , ' 1 ' 2' 0 % /4# $ # ./ , ' ./ " ./ . # 13 & 6 . & 3 / 3( 5/ ." 0 / . 7/ ( ' , 3 8 1 3& 9 & ' 0' 3 # 6 A 2 " <$ 3 /" +1 ?# ' 3 <" , $ ( = : ' < # =. 6 ;$ $ 3 +, =" > $( # @ 3B ."( C " 0 5 . 3 &+ 1 # # # ' " / . 3 &/ < 3 1 ( %/ 3 ( = 6 3 ' 3D+ %= # " " & # 8, 3 8 3 , ' E' 'F ( * !!" # & #$! 0 , 3 ( " . " " ' / -& -, . <' 0 ' # + , ' =/ 9 $ 3 " 5' . $ < , ' ' 32 $ " = + # + " 3 " 2' 2 " ' =+ ' @ 2'" 33 3 / 3 2 ' ( <G # + ' / ( 3= ' 'E E G - <G 5# G $ I ' %= < . # # & # 1 " % & 2 '+ '( ∂ + =+ 1 # #' GF , 2 ' E ' . * - <H , G 81 # G . $ " * / #" # # +1 # C 1 ∂ = -? " # #" # / < 1 . # 3 * $ , # '+ "2 =. + 3 " / $ / -5 " # ) # . (, # / 3 # + #/ #/6 3 * 13 &# ' ' 3 E * + , 3 #" # # 3 & ( 9 0 G" D = − → , ' E' 'F ( * !!" # & #$! J = " = < = . 5 %6 . 5 6 / / . 5 G+ 6 = − <( G1 1 G" D G1 # D $ ' ' # / G1 K & + ) . " "2 ., + $ " # , (* , ' ' H ( ) /< , 3 "2 $ .' / 'E ( 'G 3 " E ' " 3 # " # *& = G" ) $ # . D G" , ( ' / + " .= = " # H < 0' " / ( # M+ / L / , ' , #' . + , 3 =+ # +" # # # ( ' , 3 > * ' # " #+ N 2# 2 G A 3 ' =⋅+ " ' % = ⋅ G E , 3 = < ⋅+ * . 5 $" " ' '+ D $ $ , 3 ' 2 M / + ( , 3 (G EO % L ⋅ =⋅+⋅ (0 # " 3' '3 0' , ' E' 'F ( * !!" # & #$! P * " G" ' , 3 ( = 5 ( %6 G" ⋅− D . # $ Q/ = = ⇔ < ⋅+ = ⋅− − ⋅ = * ( , 3( KG ' 5 * 'E 0. ( %/ 0. / ( " "& 3 ?E # 0' , ' + 3 " 9 # # 0' . K + #K / ( = − $ + $ ' =− G 0 " # L E( E # " 2 E ' ( = ⋅+ = − ⋅= − , ' E' 'F ( * !!" # & #$! R p yp = E = py = ay - by² a yp =1 PAF: p = a - by GE yp =0 0 ## & %( E " $ . /$ & ,D E ' + /> $ ( a 2b # ' 0' , . ( " $ # # '8 + " + 3 a b 2 y -S # E ' ## & %/ ( 2 + " = − ⋅ = +" # 2 , = − $ = + = ' A 3' .,D #/ 2 >" C # % < E TU 2 ' (, 2 # # E ' (G E = =− + = +# C2 ,E ' 0 # #2 #2 ' ' = 3 # + G 3 "2 9 A E E2 ' # 0 # & I " ' $ R + "+ , ) . &R % / " L , ' E' 'F ( * !!" # & #$! V . S # I # / E ' G ## & % E ' 0 ? & # # .E( = " # =− % J M 5 ' " #6 33 G2 # # # . 33 # " C2 2 $ /- # " ' $ .% " ' / G D ## & % " & E 8G ' ## &" G EN G ' "# 5 + ' " G1 + 5 G E " ' p a GK * pM D * pW H G A C J P PAF: p = a - by a 2b D 0 * yM * yW , 3 a b y ## & ( G " , ' E' 'F ( * !!" # & #$! " W$ + D # E , 1 + # #+ ) "+ . $ + $ " & # 2N $ ' 7 , 3 ' 0# , $ , / . 3 E & * 2 (/ 0) , 3 # # , -3 -+ ) , '+ $ # '7 0 7 *' %% 1% %QJQ/ > L ' G E G ' ' + ' # 0' " 7 " , ' # , 3 # ' ' ( , A ' '# #" # /, /G " "# 3 D # ' & 2 * #" # 2 & $ & C # + 'E # / " ( . + G" D * #" #' # * = 5 %6 ( ⋅− = = ⋅+ ⋅− = = " %@ ' 3 #> A ( ⇔ η ⋅⋅ + = ⇔ = − ⋅ ! + η = !− "# $ ! G . &Q / " + E H# + H " # # # ' L (5 , ' E' 'F ( * !!" # & #$! Q ' G E8 * B #" # ( = #" η = −∞ η =+ G" D , 3( < > η G EO , # 3 H# H ( =+ η < N $ $ # " 'E ' ' " CE * * * 5 D' # $ 2 + I . %/ # " η G" , D G +# " 5 M # # E , ' 3 # 2 , ( = ' 5 3 ' G ' 7 ' 5 $ $ & 2 L $ " + N+# * , #+ ' 2 I , η> 2 # 3% ( 0' ) (? 7 0+ # # " ,% I ." G G" ## ' # D D , * / 0 #" # # I ( # η = −∞ " # ' , 2 $ 3 # " ∞ > ηM > 1 I yp #" # ##/ ##/ , ## & & * #" # E G .' / G '" # /# ' # " ' # ' ,' G " ' * 3 '# ( # ' G1 0 ' +" 1 '' % % L & # * #" # 3 + 'E " #" # 3 ." " * # " #+ + , ' E' 'F ( * !!" # & #$! T % ' 33 ; ( " #+ > '' # E &% # % " # 1 33 G 5 # G , CE $ #3 # ' D3 . 8 2N ' # G # ' . 3 " & 1 3 M+ / G" , ( , ' ' " * # #" # G ': ' #* ' + 4 # + 3 ,N # 1 * # G 2 ' D ) 33 + # " #+ '3 L . 8 < 3 % G ' 1 (5 , # 2 2 0 , # '' ' # $ + / + EN " "2 G M / + /H # B . 5" + & , " " 3 # + 02 / , " * # # # " #( EN 02 " 02 7 CB EN + $ & @ / 1 , 3 @+ 3 * #" # # * # " #+ 2 .) : ; 02 7B + 5 3 3 02 # 7 02 # 1 #* 71 #3 # " #( 3 02 1 7 CB + ' 33 & # 1 " +" ' ? , " 3 . ,2' H CE ) )0 # $ ? # ' / $ 7 CB + ( + ' " $ # 3' " + ? 3' ,2' $ < "2 = 3 #. 3 '# # + ' ' #' 3 * #" #) 2N E * * 1 "2 + 0 " + , # & #" # I " 9# ' 1 .' 3 #3" "' / 5 G " # L ' # ' ' 3 /# # # # ' & 3 + @2 53 ,' E 0X 1 #" G ' +' $ + # # , ' E' 'F ( * !!" # & #$! % B 3 + 1 3 + . G /1 # . 5 , # @ +@ 3 # ## + @ /, "' ' ' I" # # " ,'3 , . / + Q% - T + , . %TTT/ J - QP ...
View Full Document

This note was uploaded on 11/04/2009 for the course VWL VWL taught by Professor Ka during the Spring '06 term at Uni Münster.

Ask a homework question - tutors are online