{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

20072ee132A_1_hwk1_sol

20072ee132A_1_hwk1_sol - EE132A Spring 2007 Prof John...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
EE132A, Spring 2007 Prof. John Villasenor Communication Systems TA: Choo Chin (Jeffrey) Tan Handout# 4 Homework 1 Solution Note: Euler’s Formula cos sin cos 2 cos sin sin 2 j j j j j j e e e j e e e j j θ θ θ θ θ θ θ θ θ θ θ θ - - - + = + = - = - = 1. Evaluate the Fourier transform of the following functions of time: ) ( ) ( ) ( ) 30 2 cos( ) ( ) ( ) ( 3 2 ) ( 1 t u te t s t u t t s t u e t s at b at - + - = + = = ringoperator where ) ( t u is the unit step function. (a) Use direct evaluation (a>0) 2 1 1 ( ) 2 ( 2 ) 0 ( 2 ) 0 ( ) ( ) ( ) ( 2 ) 2 j ft at b j ft b a j f t b a j f t b S f s t e dt e u t e dt e e dt e e a j f e a j f π π π π π π - -∞ - + - -∞ - - + - - + - = = = = - + = + You can also use the Fourier Transform table in the text book: { } ( ) 1 1 1 ( ), 0 2 ( ) ( ) ( ( )) ( ) ( ) 2 at at b b at b b at e u t a a j f s t e u t e e u t e S f e F e u t a j f π π - - + - - - - - > + = = = = + .
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
(b) Given ( ) 1 t δ , by using the integration property, 1 1 ( ) ( ) ( ) ( ) 2 2 t u t d U f f j f δ τ τ δ π -∞ = = + . Using the frequency shift property, 6 6 (2 ) (2 ) 2 2 6 6 2 6 6 2 1 ( ) cos(2 ) ( ) ( ) ( ) ( ) 6 2 2 2 1 1 1 1 1 1 ( ) ( ) ( ) 2 2 ( 1/ ) 2 2 2 ( 1/ ) 2 j j j t j t j t j t j j e e s t t u t e e u t e
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}