# intro - PREDICTIVE LEARNING y = “response/output”...

This preview shows pages 1–12. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: PREDICTIVE LEARNING y = “response/output” variable (unknown) X : (3:1,:132,- - 33377,) = “input/predictor" variables Prediction: Q = F(X): L(y, F) : loss criterion: regression: L(y, F) : (y — F)2, |y —— Fl classification: 3;, F E {C1,C2,- - -, CK} L(y, F) = Ly’F : K x K matrix Lack of accuracy ("risk"): R(F) = EXyL(y, Optimal (“target”) function: F* = arg minF R(F) Learning: T : {xi-5.1%}? “training” sample F(x) 2 learning procedure (T) r: F*(X) F¥(§) : H imcagt @mcﬁz'm” GOOJ : ‘QK'MJ C6004 Ctpr to F¥C£) LASng {ha 010qu A FCE) zbmmé WQMijLJEL‘ETI) mks coax/336.: AAko ﬂwimg Wmmx ’W‘W‘LT OJ;- Lovegtck um CAEUQLOPQJ owe/x Q'Le [613- C1\ Mucmme lewim% (A: 24:3) - becisim Mm & ﬂ.th boa/max CL) PS‘QC-ULOlO%L/k _ Macho} mesh (35 Em%imemim% - pat-tam Mcog, me am mei 35in by; mexﬁnools CLMS+M1M\$ (Lt) El-OlOrévl — gush/dang Theo/M" ,ueAvl 41AM. 9M ﬂame mewoois. (1) Moch 44Aqu Cleve/toch 41M ,Qa'mea/L mudmw Q 90% {Hamlin/Lew; ﬂemﬂ) (3) MMCM aioou't Ame/(0W1 x JKvaoiov-Leot (MM wig Wee/1% (Quasi x MMLL'MQM) FQLLﬂa—ys-i-em ""J U—H RemlLJcI/l COW [M abut-ﬁe 0M£4mwt g‘m \oo‘H—k 61%. him—Wimd hapleiojﬂqﬁ Mos-t kchMiCLueA MO'El-vog-l-ed WM hemichl'cg bis P1123 clown/n.5, ‘I‘LO we COMJ/ﬁa/‘H/l (:L} (L) (Q) Li U0 memo“ = mace-IQ bullet” MO Mathtﬂcﬂ Mt'UE/XSQU’LI wow oww( owe/1(Aeomavmlole) (ML: haul-oi Uo(p€At,’ U0 42433 [OLMCH TLL‘ﬂS Each maimed how Llodlé 0-? 75521595215 JFMMc-ELMS F‘Qf)J ample x3551 U1 [5.1%IY10LQ / mol'se Aodu'o cg: Fags) +5 1“ ' ’1".— mode“ 5,394 “3&1ch H45 Joe/0‘1: Hour +0 choose; ME‘HAUOLS oki‘y'é-M Cm Mat Werq MAME about F‘cg) MorHH ﬂue—9140A +0 ‘UJJA-Gi A?) Madam about We rumble/M off; ham/1.4 T/‘wt oeuehal —- mtg/milk be»on on use comm-[thee Com aim-3cm. Com-EEM: Repm+eol (ampml'oal) ISM-(:04qu CWPMlSGVl-E be+mem ﬁnd-(440015. must be Jere/xwied mm (la/L12 U0 awe—Hand dmml‘mmJ—BA Oi’l/LULS owe/2. OLH AK+MOL£LEJVLJ Fm euuq xvi/LE-f’I/loMJ mm w an: leb‘t x.)ng ASL-MDHPL‘QVLS (faAaaE \$mctiﬂ‘4, 3/“, ﬂow/trait? ﬁnal) ¥0A wealth LIE A34) MHCIQLIL/i aPMop/liaie (amok comumsatq) PM‘CMMOWIUI Amtl'mgjs av: Pan-Hca[m ,wamplveA .ro‘aoulci mo‘t '04 ixMaPolakvr loetéo'hd ﬂose ﬁpecixcl'c; .QXa/Mloleo. alSo _ (AW Wu? = Amdﬁwt umtqble} This M MEECIQHEI hue LG #145 OlM‘H/loJllS (Mew) Ame—Puma AA and O 3* “We CUM Petft 0’13. Se(ec~l:l'ovl Maxim; W056 904 (Jo—€th it 010645 beat W (mo/m. libiqu +0 [08. Nate“ (meme :2) mo pape/L) No idea. 0-?- Mouj' «mo-moi WW {:Aied 4:0 céei chose/n WW‘EEA ﬁHlaA—af. Paper; Mlecﬁim eJH-"ec-L— (mo Papa/z. [{- mot 1149 but) H 0104 PM +MMI'Mé (on "~leo‘tuoianaJ wat Ludo: IM aunt/l aka—HR Moutt/lSiS’ view 04 {Qt/[LCM dePQMM-‘S U‘n ‘HAE’ quﬁist ‘ MM Miss/th malt um We. memod- Au-H/la/i is mama .Qx rth M applgfms ‘I’VLQL/‘L Own Mae‘l’hod mom comps-ﬁfty“ ._ Mme AMEN M tom/11:14 A W049, {mothqu/Q +0 0&0 _. m+meak Wmtitmaﬁ MmV-‘Wt tmoaqts +0 be. beam/vi Commutation/13: Comaomiscmx most M56441: Omlv] meOSE’. 0‘9 -H4e Papal 04.4mm“) have mo UJE/CH-EM MMeo-H, Ana-’1 olf—F-FeAmfﬁd ,aKl'I/s Wow/Lg #443 Cowpe‘éffﬂf C Som‘éa Fe WPQEEELEM) whwﬁiﬁ‘ﬁe 0m: CO‘MPML'SOVLS mow/13 0142/2, MQ‘HAOO/Ls morl- ALVL—I-P/LLO‘E'l/ng C 012(2ch —-*> Qm't (m eguaf Que—EI'Ma) Campanm£s o4 Lemml'ma Aigmtlﬂtms C HOWth Moxanqu 3— SKI/WWW) 1- Model 0}}. [Gaffe/Um AJAuc—Emaz EKWPIES: OLR 3‘ 3 am Jim/team «Ramada/L5 A an F3ng :OLB+_Z.C£A'K<S V (ﬂing) a“ l/AloLle-‘EWE Wee/talfmég: SVMI 3’ I mtl Polémmu‘xlg +0 4:;er MJM C cAe-LQJIM/Limeq ——-""'" 11.. Same ‘PMMC'EiM I Que/(w (ﬂack 0+1 CBUCLLI‘EU‘ 0-f- rvaoc/(QJ ‘Eo oion‘l'q PoEuAmkimx: EQEIJC32F%5H COL [fl-MOL+£.\ bm‘EDL 1 Acme+53m<aa C Mos-E. "Ma—Pmd ") OLR m ‘03P (Cg—0.0“.Zaaxd )1 u 3‘ l M tied-CL EEC%R“QB—ZQAXA&)Z ézl rRR/LASSD M )xiﬂf deem: 0LR+{ 22‘ AZIle 3:: SUM 400\$) 3.13:5 #Cﬁji i AIW FCXLX) l M A M 2-. olw’rrli FZEi-(QL FC§L\]++>\Z'QS A"; 93‘ .-—-"—'_ 1A Olefimféaxﬁfm ﬂea/1c.“ MQ'I’QOMI Ml-MEM£5,€ (Mo—+01 g‘n Amie/c? €XWP1€Q _' OLE‘. ‘ [email protected] Mowhix 094%qu RR “ Lt LASSO -' (Zuadhafic {meta/LN SVM - H OLH couueK whims WWI-“chute Mfrs/\{rwuwt l alonl'ﬁl Mane @lexlble mange/{meal (TAeeSJ memd mats) chsJ-Ml'mg) Hewukﬁl'c. MMCLI Ahqtegfeé C ,Lﬂwle'ue. dwiﬂam) Gheedg} ﬁ+eava~e¢£ OALQ—éCﬂ/vbﬁ EM. aﬁWIWM ovo‘L—l'mi‘éafim Multt-EI'E. M41.M.1/MQ QKWI‘EHML‘C + /.)+CL'(:LIS"£:lIC£L[ PAoLie/Mg Aol’rv‘t Mepwc/(s CM ,o-l‘a/l‘b (9.9) S‘i‘a‘EIIS'Eicoa-I WPM'EIQ) 04er m Aeahcta «MACH-631 ax: {pd-Q aA I. &_Tf__ PMMEMS Cam't \oe mpmaled ab Ale. o—Sl-Eeah done Ala/L Wash”; 084% mmogaﬁe COMOOWQH MLMI'M my,“ tag-be Mm WW1 Aeqnofa Smmm Mal — ,QQMML‘M% Macadam—602 1- Mac/{eel on. Pat£eAM 434Ach I _ A 5%" "‘35 “mm—{Jan {901° «C M 151(9):.ﬁZAC‘gMchLJgH 01.50412 1.31 +).PC9.) Ame—“@416 A, = L I 53-94% mo-{r E jag-“Col o. :: WWI/v1. S Cg) CR, -—3 ..-. 13(vath pwcedmws cam Dawn ,4)“ owl/I 04 0:1? (II) alcove ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 12

intro - PREDICTIVE LEARNING y = “response/output”...

This preview shows document pages 1 - 12. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online