Unformatted text preview: 50 differ) MATH2602 — Quiz #6 _ June 24; 2009 Name: GTID: Each problem is worth 10 points. Show all of your work, and try to be as neat as possible.
Points may be deducted if solutions are unclean Use the back of the paper if you need
more Space. Problem 1 Determine whether the following graph is Hamiltonian. Either number the
vertices so as to indicate a Hamiltonian cycle or explain why no each cycle emists. TEF 1’ ' "at H ‘ 'n. 5 '  75¢  ”fl" is — WM W C— ., mm v3 pémh a
cyan. m G  _ ‘
dgtvlj=dv(vl)=2, @“Vﬂq ’VIVQ’Vz’Vz’Wquc I.
Sine. 42., (3 alga/J aﬂwl' (Vi/'5 ("VJ 4‘17.“ ,
1"!”3: qu;_; 121,116 ’56 .
wO’LA’" 4/31): ,1/3 "V1 6' C" 50 11'qu3 “Vs a); 1/415 :5 aqua.
in C and! ﬁﬁ) a mf/ACL'CIIW? . ‘ Problem 2 Suppose G is a graph with n certices, and A is its adjacency matrix. Show
'that . Til. T1. 8 X # four cycles in the graph G : (2(A4)i,i — 2(A2)ii m 2 i (A2)i',j) . i=1 i=1 i,j=1,i#j (for example, # four cycles in C4 :1, 0r # four cycles in K4 =3.)
(Hint: Exclude all of the walks of length four which are not a cycle in G.) n.
[aha Is we «w #4 we: oftgm,» a.
m. .0 id ' bkuk’ Wadex "if :
We have {our #511“! («Sc5 Mh'c/J M. to a Walk 0: (“337 ‘i‘ é’ ﬂaky af M
@ o : Inwwr #of ﬁt? I“)!!! of W14 ;(ﬂ )‘lt.
V. II. ‘ n luff z
I; II ’I Z (A )t. ‘
(9 _ Vuaalf ‘3‘” if). U .
V a t ’7 I; n 2
H——a (“73" a I] I n n 7' . 7, (14%;)
:C) V czmq)_'_(z‘cn)m+£Z; i}
a V a 1' 0 ‘1‘ ‘5' {If}.
3 17' ll : 571113 I, is] a
CL _
% ch 4—6 dz 8 ﬁms " _
Bui' M Cummt 4“ Y ’ , 1H" 3 m. (emf 75m doth/tie é Weft/admic . . W f”
W‘ W ”5"” 74"” l'd‘ﬁmi 5 ’3 75:3 Cam/aide: at mf ...
View
Full Document
 Spring '09
 COSTELLO
 Math

Click to edit the document details