practice_test3_solns

# practice_test3_solns - “sectien it ‘(36 countereXample...

This preview shows pages 1–8. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: -' ' “sectien- ] it /_. ‘ (36) countereXample to demonstrate this. ( l V = number of vertices, | E | = ninnber of edges ) 1. Determine Whether,th'e"statement is true for all (simple) graphs, andif notpgive a ' r .- (i) If G is iseniorphictto a bipartite graph, then G. is also bipartite. '- .‘ Trtie False x (ii) IfIVl=7,and|E|=12,menGmustbepmﬁ:_- u True False (iii) If each vertex 9f G has degree at least 1[/21 V I , then G is connected. Fizeiez micjiilgor hear-K I. a r ' a}? vertex V q — , {ﬂ {yutZ-‘S‘ I W ("fur , ‘ehé False _ / .' fix, €44.21 ‘ £32373? i’ﬂw'f' I C atlwﬁf E3 ﬁfi‘w. I \ ~ ~ I 9 “£3.6ij 5665" 3%.. £4} ﬁxl ‘1'} V; I , vr ‘ Y‘UW‘JBQF @ﬁ'ﬁ’fﬂﬁ True False leﬂirii‘é? C" “1359.91 . W 3% £th {3 5pm m“ i- n c . ‘ lf ‘ (v) If each vertex of G has an even degree ; then [ V | is even. i * c/C t i r. w, ‘ l V l 3; bjmcf‘t.‘ .5 True False 4 w ; OCR 5 (vi) If G is connected, and its edges have weights, all of which are different, then G has exactly one minimum spanning tree. ' ' ' Kb?!“ Ky" LAS- iccsl ‘5 _ LI“ 1' i 3V? ) }.-'\3'“§,.._e‘{- ' True SB mama" 5 dun/5 (,le (Le; _ V 2.Fo‘r which po—sitive integers n does ﬁle complete-bipartite graph _ .. 613) _ ' ' - , (i) , have an Euler cycle? ﬁrm-(Sir 1w: “3 {mwa t: mew-K .. .j.L—-v--~-C‘-' (iii) pave a pluanarxdrawing ( i.e., is a planar graph). 4; .I I =/, _“ 1 _7 ‘I '. _ ,, ‘ _, D ‘3 kiwi-ex Jew-SAL» SJ Eiﬂvw 1: cvin G (i)- Find the chrOmatic number of 6. (ii) Find the‘chromatic number of H. (iii) Are any two of the three graphs shown isomoﬁmic? EXPLAIN. =1 M 1 x , i ' - .1.“ §— “1 ,u ' Xx“); LHGUV {f if s ‘b‘ The ILIV‘w‘n{ \Wwwm A L 2:: .. r r -r-’ ‘3‘ v.12- 1 3 1’ r“; _ s 5 3 J} i {-u ., ‘~ 2}" L.="7 3.x \, Math 26502 131,132 Name- 1. Determine whether the statement is true for all (simple) connected graphs, and if not, give a counterexample to demonstrate this. (A(G) = max. degree,‘7C (G) = chromatic number, [VI = number of vertices, [El 2 number of edges) (36) . ‘ (i) If X'(G) _<_ 4 , then G is planar. 5%. K33 W 1: '3» - " __ L ' t 2 True False ii) IfA (G) = 4 ,‘ then 7((G) g 4. E . Kg @ a / R 1 g) A = q True False iii) lfGis planar, then XKG) _<_ 4. ._., u. 'THG “ Faun. QoLon— l MW . True False iv) IfA(G) =4 , then 32W] 24a: Elms .<. Wl-‘l True False v) le(G) 5 4,then£\(G) g 4. E -s °§< 2:9. , A = r: l/ I True False vi) If G is bipartite and A (G) g 4, then IVI _<_ 8. W / x ._ 1 h“ __ 0' True False __ .. I - .1, “Lia—6»: .; _ K». can _, .H .7 _ w ‘ r 3 3 ‘ 2r 1 I i) Exactly one of these graphs is bipartite. Which one is it? I 3 ii) Find :mA). - -7 __Li__. iii) Find 76 (B). ' _§_ iv) Exactly one pair among these ﬁve graphs are isomorphic. Which are they? Explain. A E ISGMWFHW “LM‘HS NINE THE- SAME QMMMA‘T‘C— ’ I NUMBBL’S’Qb 13 mm.- (Sawmilth Tn pow 0F mg 07146131 km: A Mn: E QA—N mm- Be LSQMOILPHJC. Pa Dumb E News Queue: 9F size Li, B mxmc som‘T: go :1- IS RMBC OK RN01: E". Cue-cc. mm A Mob 5 MU? :so MORPHAC. 3% thwcx RN RNMPMNFE Leawima. OIL ewe-“1K Thian XCCX=L11meJeTXCB\=3J 0R C £5. PLPx-Nﬁft! ULJHtLE B is met b.) A C/ {3'1 :3 Q. n: D H B s: B U} "U m D E in (IQ {If CD (D E. H D“ (D »8 :3" S '3" 0 Ln (1) (D D. Uq ('D S: (D H (IO :5" H (n 33 HQ H < ('D :3 0" (D .._. O S A U r-1 p: E 3:. v (16 _.A.. ..._ ..._. * 4 3 6 r 5 * 2 4 __ _ ..__‘_ "B" 4 * 2 7 ' 5 5 * =e< ‘ ‘ -C 3 7 2 * =1: 1 3 a: 6 D 6 7 * * l a: =z< 5 E r 5 5 1 1 I * 4 ;7 - a: F * 5 3 =£< 4 a: a: 2 G 2 * * * 7 '1: =1: 8 H 4 * 6 5 =2: ' 2r 8 >3 ‘ B (W me z: t‘—{\ (ii) Show that between any two vertices there is a path of total weight at most 8. Luca Air Tue- m! A SPﬁ-NNtNGa may Qnmmcms A LUMQUQ PATH muses!“ Adv! SAUL BF me VMTLLGS‘ In “nu-s enge- emw one 0F moss Perms HAS Tom vet-hem- MOM? WAN 8’. Tam Ls THE Pﬂ—T‘H FMM 6: mo H. Rm- 6. mm H Aire— TOthhB err .w shee- 0F maﬁamT 3? (Mb Etc-1 me:- Fﬁm G_R._Ru-OF Tomk wane-Mr £03, ...
View Full Document

## This note was uploaded on 11/08/2009 for the course MATH 2602 taught by Professor Costello during the Spring '09 term at Georgia Tech.

### Page1 / 8

practice_test3_solns - “sectien it ‘(36 countereXample...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online