# hw2solsmc - Solutions to Homework 2 Math 2000 Notes...

This preview shows pages 1–2. Sign up to view the full content.

Solutions to Homework 2 - Math 2000 Notes: Questions 1.21,1.22 were covered in the tutorial. The solution to 1.23 may be found in the back of the book. (# 1.17) Let U = { 1 , 3 , . . . , 15 } be the universal set, A = { 1 , 5 , 9 , 13 } , and B = { 3 , , 9 , 15 } . Solution . ( a ) . A B = { 1 , 3 , 5 , 9 , 13 , 15 } ( b ) . A B = { 9 } ( c ) . A - B = { 1 , 5 , 13 } ( d ) . B - A = { 3 , 15 } ( e ) . A = U - A = { 3 , 7 , 11 , 15 } ( f ) . B = U - B = { 1 , 5 , 7 , 11 , 13 } A B = { 1 , 5 , 13 } . (# 1.26) For a real number r R , deﬁne A r = { r 2 } , B r = [ r - 1 , r + 1], and C r = ( r, ). Let S = { 1 , 2 , 4 } . Determine α S A α , α S A α , α S B α , α S B α , α S C α , and α S C α . Solution . (a). We have [ α S A α = A 1 A 2 A 4 = { 1 2 } ∪ { 2 2 } ∪ { 4 2 } = { 1 , 4 , 16 } . ± α S A α = A 1 A 2 A 4 = { 1 2 } ∩ { 2 2 } ∩ { 4 2 } = φ. (b). We have

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 3

hw2solsmc - Solutions to Homework 2 Math 2000 Notes...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online