Lecture9 - 9.Poles&Zeros n(s G(s = (s&d(s)are d(s polynomialsins Reminder: s3 4s2s 5 Solvingd(s)= Solvingn(s)= Note:Th

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
  1 polynomials in s. Reminder: An example of polynomials in s is: s 3 +4s 2 -s+5 Solving d(s) = 0 for s yields the poles  of the transfer function. Solving n(s) = 0 for s yields the zeros  of the transfer function. Note: These roots are, in general, complex. They can be  plotted on a complex plane. We use x for poles, and o for  zeros. D(s) = 0 is called the Characteristic Equation  of the system. ) s ( d ) s ( n ) s ( G =
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
  2 Poles of Transfer Function  Stability The location of the poles tells the stability status of the  system. If all poles are on the left half plane (LHP), then system is  stable. Any poles on the imaginary axis must be single for  stability.
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 11/09/2009 for the course ENG 91301 taught by Professor Lui during the Spring '08 term at Hong Kong Institute of Vocational Education.

Page1 / 5

Lecture9 - 9.Poles&Zeros n(s G(s = (s&d(s)are d(s polynomialsins Reminder: s3 4s2s 5 Solvingd(s)= Solvingn(s)= Note:Th

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online