lecture12 - 12.NyquistStabilityTheorem...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
  1 12.  Nyquist Stability Theorem We know that if the poles of a system are all on  the LHP, then the system is stable. We also know that any poles on the imaginary  axis must be single for stability. Recall poles are roots of the characteristic  equation. The characteristic equation is formed by   1+  L(s) = 0, where L(s) is the open-loop transfer  function. Using the Routh-Hurwitz Criterion, we can  determine stability without solving for roots.
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
  2 L(s) = K(s)G(s)H(s) Substitute s with j ϖ . Decompose L(j ϖ ) into real and imaginary parts. This is the Bode function for the open-loop  transfer function. Plot the real part against imaginary part on a  complex plane – This is the Nyquist plot. Stability Based on L(s) R(s) K(s) Y(s) H(s) G(s)
Background image of page 2
  3 Nyquist Stability Theorem Suppose we have plotted the Bode function of the 
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 11/09/2009 for the course ENG 91301 taught by Professor Lui during the Spring '08 term at Hong Kong Institute of Vocational Education.

Page1 / 9

lecture12 - 12.NyquistStabilityTheorem...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online